HCV core, NS3, NS5A and NS5B proteins modulate cell proliferation independently from p53 expression in hepatocarcinoma cell lines

2004 ◽  
Vol 149 (2) ◽  
pp. 323-336 ◽  
Author(s):  
S. Siavoshian ◽  
J. D. Abraham ◽  
M. P. Kieny ◽  
C. Schuster
2020 ◽  
Vol 52 ◽  
pp. e49
Author(s):  
F. Ragusa ◽  
N. Panera ◽  
F. Izzi ◽  
S. Cardarelli ◽  
M. Giorgi ◽  
...  

2021 ◽  
Author(s):  
Canbin Xie ◽  
Liang Li ◽  
Xiaorong Li ◽  
Min Ma ◽  
Fei Long ◽  
...  

Abstract Background Colorectal cancer (CRC) is the most common malignancy worldwide and has become the second leading cause of cancer-related death worldwide. The RNA-binding protein polypyrimidine tract-binding protein 3 (PTBP3) was recently reported to play a critical role in multiple cancers, and its molecular mechanisms involve RNA splicing, 3′ end processing and translation. However, the role of PTBP3 in CRC is unclear. Methods We analyzed the expression levels of PTPB3 using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets and clinical tissues. The effect of PTBP3 on CRC cell proliferation was measured by Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry and tumor xenograft assays. A series of experiments were conducted to reveal the mechanisms by which PTBP3 promotes CRC proliferation. Results We showed that PTBP3 was upregulated in CRC and associated with a poor prognosis. Knockdown of PTBP3 in CRC cell lines restricted CRC proliferative capacities in vitro and in vivo. Mechanistically, we found that PTBP3 regulated the expression of the E3 ubiquitin ligase ubiquitination factor E4A (UBE4A) by binding the 3' untranslated region (UTR) of its mRNA, thereby preventing its degradation. We also discovered that UBE4A participated in the degradation of P53, and knockdown of PTBP3 in CRC cell lines increased P53 expression. Overexpression of UBE4A rescued PTBP3 knockdown-induced inhibition of CRC cell proliferation and P53 expression. Conclusions PTBP3 plays an essential role in CRC cell proliferation by stabilizing UBE4A to regulate P53 expression and may serve as a new prognostic biomarker and effective therapeutic target for CRC.


2021 ◽  
Vol 18 (4) ◽  
pp. 689-695
Author(s):  
Jizhong Han ◽  
Yu Xiong ◽  
Huajiang Deng ◽  
Jie Zhou ◽  
Lilei Peng ◽  
...  

Purpose: To investigate the role of miR-455-3p in gliomas. Method: Quantitative real-time polymerase chain reaction was used to measure miR-455-3p and paired box 6 (PAX6) levels in glioma cell lines. Western blot analysis was used to determine the expression of cell cycle regulators. In addition to over-expression, silencing of miR-455-3p or PAX6 was performed to study the functions of miR-455-3p in gliomas. Results: The levels of miR-455-3p were significantly up-regulated in glioma cell lines (p < 0.05), while miR-455-3p over-expression increased glioma cell proliferation and interfered with the progress of the cell cycle (p < 0.01). Furthermore, endogenous miR-455-3p silencing prevented glioma cell proliferation by regulating cell cycle progression (p < 0.05).The results also showed that PAX6 controlled the cell cycle while PAX6 silencing selectively regulated p21 expression (p < 0.01). Furthermore, miR-455-3p and PAX6 influenced p53 expression. Re-introduction of PAX6 expressing vector into glioma cells rescued the pro-tumoral effect of miR-455-3p overexpression. Conclusion: These findings demonstrate the role of miR-455-3p as a tumour oncogene in gliomas via regulation of the cell cycle, indicating that miR-455-3p might act as a new treatment strategy for glioma cell tumours and a predictor of survival in glioma patients.


2019 ◽  
Vol 17 (5) ◽  
pp. 265-275
Author(s):  
Y. Peristiowati ◽  
Y. Puspitasari ◽  
Indasah

This study is aimed at analyzing the anticancer properties of papaya leaf extract, specifically the inhibition of cell proliferation and apoptotic induction through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53 pathways. Twenty-five mice (Mus musculus), aged 2 months and weighing 20–30 g, was injected with 0.5 mg dexamethasone for 7 days. The mice were then injected intracutaneously with 1 ml of HeLa cells (8 × 106 HeLa cells/microliter). The mice were divided into five groups (5 each): negative control (P1) (5% CMC-Na, sodium carboxymethyl cellulose), treatment II (225 mg/kg BW (body weight) papaya leaves methanol extract), treatment III (450 mg/kg BW), treatment IV (750 mg/kg BW), and treatment PV (2 mg alcohol anticancer drug). Papaya leaf extract treatments were applied for 2 weeks. Then, the tumor tissue was isolated for hematoxylin and eosin staining. Immunohistochemical imaging was used to detect Ki-67, caspase-3, NF-κB, and p53 expression. Further analysis was undertaken using the ImmunoRatio software program. The results indicated that administration of papaya leaf methanol extract significantly increased the expression of NF-κB and p53 at a dose of 450 mg/kg BW. Our results also showed that the mice treated with 450 mg of papaya leaf extract per kg of BW (P3) had the largest increase of caspase-3 expression compared to the negative control group. Papaya leaf ethanol extract decreased the cancer cell proliferation index and increased apoptosis of cancer cells in animal models of cervical cancer; it may also work to increase NF-kB expression and expression of the p53 gene.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aldhabi Mokhtar ◽  
Chuize Kong ◽  
Zhe Zhang ◽  
Yan Du

Abstract Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P < 0.05). Up regulation was positively related to tumor stage (P = 0.015). And tumor size (P = 0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P = 0.015), and tumor size (P = 0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.


2021 ◽  
Vol 8 (2) ◽  
pp. 147-158
Author(s):  
Raquel Martín-Sanz ◽  
José María Sayagués ◽  
Pilar García-Cano ◽  
Mikel Azcue-Mayorga ◽  
María del Carmen Parra-Pérez ◽  
...  

Proliferating trichilemmal tumours (PTT) are defined by a benign squamous cell proliferation inside a trichilemmal cystic (TC) cavity. A possible explanation of this proliferative phenomenon within the cyst may be molecular alterations in genes associated to cell proliferation, which can be induced by ultraviolet radiation. Among other genes, alterations on TP53 and DNA mismatch repair proteins (MMR) may be involved in the cellular proliferation observed in PTT. Based on this assumption, but also taking into account the close relationship between the sebaceous ducts and the external root sheath where TC develop, a MMR, a p53 expression assessment and a TP53 study were performed in a series of 5 PTT cases, including a giant one. We failed to demonstrate a MMR disorder on studied PTT, but we agree with previous results suggesting increased p53 expression in these tumours, particularly in proliferative areas. TP53 alteration was confirmed with FISH technique, demonstrating TP53 deletion in most cells.


Sign in / Sign up

Export Citation Format

Share Document