scholarly journals Artificial heat waves induce species-specific plastic responses on reproduction of two spider mite predators

Author(s):  
A. Walzer ◽  
T. Steiner ◽  
B. Spangl ◽  
E. Koschier

AbstractClimate change models predict that the frequency, intensity and duration of heat waves will increase in the next decades. Heat waves can have profound impact on the reproduction of biocontrol agents ranging from postponing oviposition to manipulating offspring quantity via egg number and quality via egg size. Such species-specific responses of biocontrol agents to heat stress may also affect their success in controlling the target pest. Here, we evaluated the predation and reproductive performance of the two spider mite predators Phytoseiulus persimilis and Neoseiulus womersleyi exposed to simulated mild, moderate and extreme heat wave conditions over three days. Irrespective of heat wave conditions, all N. womersleyi females survived, whereas 12% of the P. persimilis females died. Both species responded to heat stress via plastic modifications resulting in increased predation rates and smaller egg sizes. Significantly more P. persimilis females postponed oviposition during the experimental phase than N. womersleyi. The deposited egg number of Phytoseiulus persimilis was not affected by heat wave conditions. On the contrary, the reproductive output of N. womersleyi was a function of temperature, i.e., the higher the temperature, the higher the number of deposited eggs. These findings indicate that P. persimilis is more heat sensitive in relation to reproduction than N. womersleyi. However, further investigations of heat wave effects on other fitness-related traits and their consequences at population level are needed to find out whether N. womersleyi is an alternative or supplement to P. persimilis as spider mite control agent under heat waves.

2014 ◽  
Vol 11 (4) ◽  
pp. 5969-5995
Author(s):  
C. C. van Heerwaarden ◽  
A. J. Teuling

Abstract. This study investigates the difference in land–atmosphere interactions between grassland and forest during typical heat wave conditions in order to understand the controversial results of Teuling et al. (2010) (T10, hereafter), who have found the systematic occurrence of higher sensible heat fluxes over forest than over grassland during heat wave conditions. With a simple, but accurate coupled land–atmosphere model, we are able to reproduce the findings of T10 for both normal summer and heat wave conditions, and to carefully explore the sensitivity of the coupled land–atmosphere system to changes in incoming radiation and early-morning temperature. Our results emphasize the importance of fast processes during the onset of heat waves, since we are able to explain the results of T10 without having to take into account changes in soil moisture. In order to disentangle the contribution of differences in several static and dynamic properties between forest and grassland, we have performed an experiment in which new land use types are created that are equal to grassland, but with one of its properties replaced by that of forest. From these, we conclude that the closure of stomata in the presence of dry air is by far the most important process in creating the different behavior of grassland and forest during the onset of a heat wave. However, we conclude that for a full explanation of the results of T10 also the other properties (albedo, roughness and the ratio of minimum stomatal resistance to leaf-area index) play an important, but indirect role; their influences mainly consist of strengthening the feedback that leads to the closure of the stomata by providing more energy that can be converted into sensible heat. The model experiment also confirms that, in line with the larger sensible heat flux, higher atmospheric temperatures occur over forest.


MAUSAM ◽  
2021 ◽  
Vol 58 (3) ◽  
pp. 335-344
Author(s):  
A. K. SRIVASTAVA ◽  
M. M. DANDEKAR ◽  
S. R. KSHIRSAGAR ◽  
S. K. DIKSHIT

The recent decades have witnessed significant increase in temperatures both on global and regional scale. Some specific locations in India like Orissa and Andhra Pradesh have experienced unusually heat wave conditions resulting in increase in heat stress associated illnesses and mortality. There is a general belief that cities have become more uncomfortable during summer, particularly in the recent years. The present study is an attempt to examine the trend in discomfort over the Indian cities measured by an index (Thermo-Hygrometric Index: THI). Results show that in general there is an increasing trend in the discomfort from the last 10 days of April to June over most of the Indian cities. Further, frequency and maximum length of continuous periods exceeding abnormal discomfort values over a number of stations are steadily increasing particularly during May and June.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
Matthias Otto ◽  
Tord Kjellstrom ◽  
Bruno Lemke

Exposure to extreme heat negatively affects occupational health. Heat stress indices like Wet Bulb Globe Temperature (WBGT) combine temperature and humidity and allow quantifying the climatic impact on human physiology and clinical health. Multi-day periods of high heat stress (aka. heat waves) affect occupational health and productivity independently from the absolute temperature levels; e.g. well-documented heat-waves in Europe caused disruption, hospitalisations and deaths (2003 French heat wave: more than 1000 extra deaths, 15–65 years, mainly men) even though the temperatures were within the normal range of hotter countries.Climate change is likely to increase frequency and severity of periods of high heat stress. However, current global grid-cell based climate models are not designed to predict heat waves, neither in terms of severity or frequency.By analysing 37 years of historic daily heat index data from almost 5000 global weather stations and comparing them to widely used grid-cell based climate model outputs over the same period, our research explores methods to assess the frequency and intensity of heat waves as well as the associated occupational health effects at any location around the world in the future.Weather station temperature extreme values (WBGT) for the 3 hottest days in 30 years exceed the mean WBGT of the hottest month calculated from climate models in the same grid-cell by about 2 degrees in the tropics but by 10 degrees at higher latitudes in temperate climate regions.Our model based on the relationship between actual recorded periods of elevated heat-stress and grid-cell based climate projections, in combination with population and employment projections, can quantify national and regional productivity loss and health effects with greater certainty than is currently the case.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242279
Author(s):  
Paul J. Jacobs ◽  
M. K. Oosthuizen ◽  
C. Mitchell ◽  
Jonathan D. Blount ◽  
Nigel C. Bennett

Heat waves are known for their disastrous mass die-off effects due to dehydration and cell damage, but little is known about the non-lethal consequences of surviving severe heat exposure. Severe heat exposure can cause oxidative stress which can have negative consequences on animal cognition, reproduction and life expectancy. We investigated the current oxidative stress experienced by a mesic mouse species, the four striped field mouse, Rhabdomys dilectus through a heat wave simulation with ad lib water and a more severe temperature exposure with minimal water. Wild four striped field mice were caught between 2017 and 2019. We predicted that wild four striped field mice in the heat wave simulation would show less susceptibility to oxidative stress as compared to a more severe heat stress which is likely to occur in the future. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers for oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defense. Incubator heat stress was brought about by increasing the body temperatures of animals to 39–40.8°C for 6 hours. A heat wave (one hot day, followed by a 3-day heatwave) was simulated by using temperature cycle that wild four striped field mice would experience in their local habitat (determined through weather station data using temperature and humidity), with maximal ambient temperature of 39°C. The liver and kidney demonstrated no changes in the simulated heat wave, but the liver had significantly higher SOD activity and the kidney had significantly higher lipid peroxidation in the incubator experiment. Dehydration significantly contributed to the increase of these markers, as is evident from the decrease in body mass after the experiment. The brain only showed significantly higher lipid peroxidation following the simulated heat wave with no significant changes following the incubator experiment. The significant increase in lipid peroxidation was not correlated to body mass after the experiment. The magnitude and duration of heat stress, in conjunction with dehydration, played a critical role in the oxidative stress experienced by each tissue, with the results demonstrating the importance of measuring multiple tissues to determine the physiological state of an animal. Current heat waves in this species have the potential of causing oxidative stress in the brain with future heat waves to possibly stress the kidney and liver depending on the hydration state of animals.


2021 ◽  
Author(s):  
Joakim Kjellsson ◽  
Nils Niebaum ◽  
Robin Pilch Kedzierski

<p>We investigate how European heat waves and their associated heat stress on humans have changed over the 20th century. We find that the heat stress has increased, even in regions where heat waves have not become warmer. As heat stress increases over wide areas of Europe there is also an increase in the total population affected by the heat stress. </p><p>Heat waves pose a serious health risk to humans by reducing our ability to shed heat. We have studied the occurrence and intensity of heat waves as well as a heat stress index based on simplified wet-bulb globe temperature using data from ERA-20C reanalysis 1900-2010. Over the 110 years of data we find an overall warming of the air temperatures and dew point. The 98th percentile of both air temperature has increased by more than 1.5°C over large areas of Europe. </p><p>We find an overall increase in heat wave days per year as well as an increase of air temperature during heat waves over most of Europe. As such, many densely populated areas exhibit increased heat stress during heat waves. For example, the mean heat stress during heat wave days over Paris has increased by one level, from “alert” in 1900-1930 to “caution” in 1980-2010. The fraction of the population exposed to heat waves has increased by 10%/century in central Europe and 25%/century over the Mediterranean. </p><p>We find more heat waves during 1920 - 1950, which may be related to the positive phase of the Atlantic Multidecadal Variation (AMV). This suggests that the heat stress during European heat waves may also be influenced by internal climate variability, and large-ensemble model simulations may be used to disentangle the effects of natural variability and anthropogenic forcing.</p>


Author(s):  
David Hidalgo García

Abstract At present, understanding the synergies between the Surface Urban Heat Island (SUHI) phenomenon and extreme climatic events entailing high mortality, i.e., heat waves, is a great challenge that must be faced to improve the quality of life in urban zones. The implementation of new mitigation and resilience measures in cities would serve to lessen the effects of heat waves and the economic cost they entail. In this research, the Land Surface Temperature (LST) and the SUHI were determined through Sentinel-3A and 3B images of the eight capitals of Andalusia (southern Spain) during the months of July and August of years 2019 and 2020. The objective was to determine possible synergies or interaction between the LST and SUHI, as well as between SUHI and heat waves, in a region classified as highly vulnerable to the effects of climate change. For each Andalusian city, the atmospheric variables of ambient temperature, solar radiation, wind speed and direction were obtained from stations of the Spanish State Meteorological Agency (AEMET); the data were quantified and classified both in periods of normal environmental conditions and during heat waves. By means of Data Panel statistical analysis, the multivariate relationships were derived, determining which ones statistically influence the SUHI during heat wave periods. The results indicate that the LST and the mean SUHI obtained are statistically interacted and intensify under heat wave conditions. The greatest increases in daytime temperatures were seen for Sentinel-3A in cities by the coast (LST = 3.90 °C, SUHI = 1.44 °C) and for Sentinel-3B in cities located inland (LST = 2.85 °C, SUHI = 0.52 °C). The existence of statistically significant positive relationships above 99% (p < 0.000) between the SUHI and solar radiation, and between the SUHI and the direction of the wind, intensified in periods of heat wave, could be verified. An increase in the urban area affected by the SUHI under heat wave conditions is reported. Graphical Abstract


2014 ◽  
Vol 15 (3) ◽  
pp. 973-989 ◽  
Author(s):  
Lennert B. Stap ◽  
Bart J. J. M. van den Hurk ◽  
Chiel C. van Heerwaarden ◽  
Roel A. J. Neggers

Abstract Observations have shown that differences in surface energy fluxes over grasslands and forests are amplified during heat waves. The role of land–atmosphere feedbacks in this process is still uncertain. In this study, a single-column model (SCM) is used to investigate the difference between forest and grassland in their energy response to heat waves. Three simulations for the period 2005–11 were carried out: a control run using vegetation characteristics for Cabauw (the Netherlands), a run where the vegetation is changed to 100% forest, and a run with 100% short grass as vegetation. A surface evaporation tendency equation is used to analyze the impact of the land–atmosphere feedbacks on evapotranspiration and sensible heat release under normal summer and heat wave conditions with excessive shortwave radiation. Land–atmosphere feedbacks modify the contrast in surface energy fluxes between forest and grass, particularly during heat wave conditions. The surface resistance feedback has the largest positive impact, while boundary layer feedbacks generally tend to reduce the contrast. Overall, forests give higher air temperatures and drier atmospheres during heat waves. In offline land surface model simulations, the difference between forest and grassland during heat waves cannot be diagnosed adequately owing to the absence of boundary layer feedbacks.


2019 ◽  
Author(s):  
Milica M. Pecelj ◽  
Milica Z. Lukić ◽  
Dejan J. Filipović ◽  
Branko M. Protić

Abstract. The objective of this paper is the assessment of bioclimatic conditions in Sebia. A special emphasis has been given to the heat budget bioclimatic Universal Thermal Climate Index (UTCI) whose purpose is to evaluate degree of thermal stress that human body is exposed to during the last twenty years. In addition, the thresholds of daily maximum temperatures are analysed in order to identify increase and frequency of heat waves in Serbia. For this research, daily and hourly (07 h and 14 h) meteorological data from 3 weather station (Mt. Zlatibor, Novi Sad, Niš) are collected for the period 1998–2017. The results show that the most frequent UTCI heat stress categories are strong heat stress and very strong heat stress. The most extreme heat waves events are occurred in 2007, 2012, 2015 and 2017. Moreover, there were three Heat wave events (HWE) in Niš occurred in July, 2007 lasting 3, 10 and 4 days in row. Heat wave events (HWE) In July 2007 (10 days) and July 2012 (9 days) in Niš are occurrences with maximum number of days in row recorded.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Olga Shevchenko ◽  
Sergiy Snizhko ◽  
Sergii Zapototskyi ◽  
Andreas Matzarakis

The human-biometeorological conditions in Ukraine during two mega-heat waves were analyzed. The evaluation is based on physiologically equivalent temperature (PET). The calculation of PET is performed utilizing the RayMan model. The results revealed these two mega-heat waves produced strenuous human-biometeorological conditions on the territory of Ukraine. During the summer 2010 mega-heat wave, strong and extreme heat stress prevailed at about midday at the stations where this atmospheric phenomenon was observed. The mega-heat wave of August 2015 was characterized by a lower heat load. The diurnal variation of PET values during the researched mega-HW was similar to that of the diurnal variation of air temperature with minimum values in the early morning and maximum values in the afternoon. On the territory where mega-heat waves were observed, the number of days during which heat stress occurred for 9 h amounted to 97.6% for the period from 31 July to 12 August 2010 and 77.1% for the mega-heat wave of August 2015.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 483 ◽  
Author(s):  
George Katavoutas ◽  
Dimitra Founda

The increasing frequency, intensity and duration of heat waves seem to follow the observed global warming in recent decades. Vulnerability to heat waves is expected to increase in urban environments mainly due to population density and the effect of the urban heat island that make cities hotter than surrounding non-urban areas. The present study focuses on a vulnerable area of the eastern Mediterranean, already characterized as a ‘hot spot’ with respect to heat-related risk and investigates the change in heat stress levels during heat wave compared to non-heat wave conditions as well as the way that heat stress levels respond to heat waves in urban, compared to non-urban, environments. The adoption of a metric accounting for both the intensity and duration of the hot event yielded a total of 46 heat wave episodes over a nearly 60-year period, but with very rare occurrence until the late 1990s and a profound increased frequency thereafter. The results reveal a difference of at least one thermal stress category between heat wave and non-heat wave periods, which is apparent across the entire range of the thermal stress distribution. The analysis demonstrates a robust intensification of nighttime heat stress conditions in urban, compared to non-urban, sites during severe heat waves. Nevertheless, severe heat waves almost equalize heat stress conditions between urban and non-urban sites during midday.


Sign in / Sign up

Export Citation Format

Share Document