Genetic structure of Rhinoceros Rock Iguanas, Cyclura cornuta, in the Dominican Republic, with insights into the impact of captive facilities and the taxonomic status of Cyclura on Mona Island

2020 ◽  
Vol 21 (5) ◽  
pp. 837-851
Author(s):  
Stesha A. Pasachnik ◽  
Giuliano Colosimo ◽  
Rosanna Carreras-De León ◽  
Glenn Gerber
Author(s):  
Luis E. Rodríguez de Francisco ◽  
Rosanna Carreras-De León ◽  
Rafael M. Navarro Cerrillo ◽  
Liz A. Paulino-Gervacio ◽  
María-Dolores Rey ◽  
...  

<i>Pinus occidentalis</i> is the dominant species of forest ecosystems in the Dominican Republic, located between 200 and 3000 meters above sea level, with extensive and overexploited natural populations. However, over the years, various restoration plans have been performed, which could affect the genetic structure of <i>P. occidentalis</i>. Despite being the species with the highest occurrence in the Dominican forests, there is no existing information on genetic structure and molecular characterization among natural populations with limited information on both phenological and productive characterization. In this study, the genetic structure, diversity, and gene flow of the five <i>P. occidentalis</i> natural populations of the Dominican Republic were determined using microsatellite markers. A total of 145 individuals were genotyped with eight polymorphic chloroplastic microsatellites, producing an average of 41 haplotypes with high genetic diversity across populations (H<sub>E</sub> = 0.90). Significant population genetic structure was found between populations (F<sub>ST</sub> = 0.123). These results reflect the impact of reforestation programs on natural populations and diluting the natural genetic signature. Analysis of population genetic data is, therefore, crucial for the breeding and conservation programs of <i>P. occidentalis</i> in the country.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Gabriele Gerlach ◽  
Philipp Kraemer ◽  
Peggy Weist ◽  
Laura Eickelmann ◽  
Michael J. Kingsford

AbstractCyclones have one of the greatest effects on the biodiversity of coral reefs and the associated species. But it is unknown how stochastic alterations in habitat structure influence metapopulation structure, connectivity and genetic diversity. From 1993 to 2018, the reefs of the Capricorn Bunker Reef group in the southern part of the Great Barrier Reef were impacted by three tropical cyclones including cyclone Hamish (2009, category 5). This resulted in substantial loss of live habitat-forming coral and coral reef fish communities. Within 6–8 years after cyclones had devastated, live hard corals recovered by 50–60%. We show the relationship between hard coral cover and the abundance of the neon damselfish (Pomacentrus coelestis), the first fish colonizing destroyed reefs. We present the first long-term (2008–2015 years corresponding to 16–24 generations of P. coelestis) population genetic study to understand the impact of cyclones on the meta-population structure, connectivity and genetic diversity of the neon damselfish. After the cyclone, we observed the largest change in the genetic structure at reef populations compared to other years. Simultaneously, allelic richness of genetic microsatellite markers dropped indicating a great loss of genetic diversity, which increased again in subsequent years. Over years, metapopulation dynamics were characterized by high connectivity among fish populations associated with the Capricorn Bunker reefs (2200 km2); however, despite high exchange, genetic patchiness was observed with annual strong genetic divergence between populations among reefs. Some broad similarities in the genetic structure in 2015 could be explained by dispersal from a source reef and the related expansion of local populations. This study has shown that alternating cyclone-driven changes and subsequent recovery phases of coral habitat can greatly influence patterns of reef fish connectivity. The frequency of disturbances determines abundance of fish and genetic diversity within species.


2012 ◽  
Vol 46 (1) ◽  
pp. 139-153 ◽  
Author(s):  
EMILIA MARÍA DURÁN-ALMARZA

The Dominican American community in New York is perhaps one of the best examples of how processes of transculturation are affecting traditional definitions of ethnic identification. Given the intense economic, social and cultural transnational exchanges between the island and the USA from the 1960s, Dominicanyorks have been challenging the illusion of homogeneity in the definition of Americanness for decades, creating transnational social networks that transcend traditional national and ethnographic boundaries. The theatrical works of Josefina Báez, a Dominican American performer living in New York, and Sherezada (Chiqui) Vicioso, a Dominican poet and playwright who lived and worked in the US metropolis for decades before moving back to the Dominican Republic, lyrically explore issues of diaspora, identity and migration and the impact these phenomena might have in the lives of migrant Dominican women. Presenting diasporic experiences from two differing but interconnected locales – New York and the Dominican Republic – these plays offer two complementary views on the ways in which ethnicity, race, social class, age and geopolitical location interact in the formation of transcultural identities, thus contributing to develop a hemispheric approach to the study of identity formation in the Americas.


2018 ◽  
Author(s):  
Yanfen Zhao ◽  
Hongxiang Zhang ◽  
Borong Pan ◽  
Mingli Zhang

Climactic fluctuations during the Quaternary played a crucial role in genetic diversity and population genetic structure of many plant species in northwestern China. In order to understand the impact of climate change on herbaceous plants, we studied Panzerina lanata (Lamiaceae), a widely distributed species. Two chloroplast DNA intergenic spacers (trnH-psbA and rpoB-trnC) were used to sequence 269 individuals from 27 populations and seven haplotypes were identified. Genetic structure and demographic characteristics were estimated using AMOVA, neutrality tests, and mismatch distribution analyses. The divergence times between the seven haplotypes were estimated using Beast. Our results revealed high levels of total genetic diversity (HT = 0.673±0.0869) and low levels of average within-population genetic diversity (HS = 0.033±0.0214). The analysis of molecular variance indicated major genetic differentiation among the three groups: northern, central, and eastern group. The species distribution modeling and demographic analysis indicated that P. lanata has not experience a recent range expansion. The divergence time within P. lanata occurred between the early Pleistocene and the late Pleistocene, which coincides with aridification and the expansion of the deserts in northwestern China that resulted in species diversification and habitat fragmentation. In addition, we speculate that the deserts and the Helan Mountains acted as effective geographic barriers that led to intraspecific diversity.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6115 ◽  
Author(s):  
Angela M. Mendoza ◽  
Wilmar Bolívar-García ◽  
Ella Vázquez-Domínguez ◽  
Roberto Ibáñez ◽  
Gabriela Parra Olea

The complex geological history of Central America has been useful for understanding the processes influencing the distribution and diversity of multiple groups of organisms. Anurans are an excellent choice for such studies because they typically exhibit site fidelity and reduced movement. The objective of this work was to identify the impact of recognized geographic barriers on the genetic structure, phylogeographic patterns and divergence times of a wide-ranging amphibian species,Hyalinobatrachium fleischmanni. We amplified three mitochondrial regions, two coding (COI and ND1) and one ribosomal (16S), in samples collected from the coasts of Veracruz and Guerrero in Mexico to the humid forests of Chocó in Ecuador. We examined the biogeographic history of the species through spatial clustering analyses (Geneland and sPCA), Bayesian and maximum likelihood reconstructions, and spatiotemporal diffusion analysis. Our data suggest a Central American origin ofH. fleischmanniand two posterior independent dispersals towards North and South American regions. The first clade comprises individuals from Colombia, Ecuador, Panama and the sister speciesHyalinobatrachium tatayoi; this clade shows little structure, despite the presence of the Andes mountain range and the long distances between sampling sites. The second clade consists of individuals from Costa Rica, Nicaragua, and eastern Honduras with no apparent structure. The third clade includes individuals from western Honduras, Guatemala, and Mexico and displays deep population structure. Herein, we synthesize the impact of known geographic areas that act as barriers to glassfrog dispersal and demonstrated their effect of differentiatingH. fleischmanniinto three markedly isolated clades. The observed genetic structure is associated with an initial dispersal event from Central America followed by vicariance that likely occurred during the Pliocene. The southern samples are characterized by a very recent population expansion, likely related to sea-level and climatic oscillations during the Pleistocene, whereas the structure of the northern clade has probably been driven by dispersal through the Isthmus of Tehuantepec and isolation by the Motagua–Polochic–Jocotán fault system and the Mexican highlands.


2020 ◽  
Vol 93 (5) ◽  
pp. 652-661 ◽  
Author(s):  
Georgina Sola ◽  
Verónica El Mujtar ◽  
Leonardo Gallo ◽  
Giovanni G Vendramin ◽  
Paula Marchelli

Abstract Understanding the impact of management on the dispersal potential of forest tree species is pivotal in the context of global change, given the implications of gene flow on species evolution. We aimed to determine the effect of logging on gene flow distances in two Nothofagus species from temperate Patagonian forests having high ecological relevance and wood quality. Therefore, a total of 778 individuals (mature trees and saplings) of Nothofagus alpina and N. obliqua, from a single plot managed 20 years ago (2.85 hectares), were mapped and genotyped at polymorphic nuclear microsatellite loci. Historical estimates of gene dispersal distance (based on fine-scale spatial genetic structure) and contemporary estimates of seed and pollen dispersal (based on spatially explicit mating models) were obtained. The results indicated restricted gene flow (gene distance ≤ 45 m, both pollen and seed), no selfing and significant seed and pollen immigration from trees located outside the studied plot but in the close surrounding area. The size of trees (diameter at breast height and height) was significantly associated with female and/or male fertility. The significant fine-scale spatial genetic structure was consistent with the restricted seed and pollen dispersal. Moreover, both estimates of gene dispersal (historical and contemporary) gave congruent results. This suggests that the recent history of logging within the study area has not significantly influenced on patterns of gene flow, which can be explained by the silviculture applied to the stand. The residual tree density maintained species composition, and the homogeneous spatial distribution of trees allowed the maintenance of gene dispersal. The short dispersal distance estimated for these two species has several implications both for understanding the evolution of the species and for defining management, conservation and restoration actions. Future replication of this study in other Nothofagus Patagonian forests would be helpful to validate our conclusions.


2020 ◽  
Vol 9 (3) ◽  
pp. 165
Author(s):  
Gregorio Rosario Michel ◽  
Santiago Muñoz Tapia ◽  
Fernando Manzano Aybar ◽  
Vladimir Guzmán Javier ◽  
Joep Crompvoets

In recent years, a growing number of stakeholders have been taking part in the generation and delivery of geospatial information and services to reduce the impact of severe natural disasters on the communities. This is mainly due to a huge demand for accurate, current and relevant knowledge about the impacted areas for a wide range of applications in risk-informed decision makings. The aim of this paper is to identify users’ requirements for emergency mapping team (EMT) operations in the Dominican Republic (DR). An online survey was applied to collect data from key users involved in the Inter-Institutional Geospatial Information Team in DR. Our findings suggest a set of users’ requirements for EMT operations: (1) standardization; (2) establishing and maintaining a spatial data infrastructure; (3) partnership; (4) effective communication among stakeholders; and (5) capacity building. A better understanding of the users’ requirements and the associated information workflows will lead to a superior level of readiness for EMT operations in DR. This knowledge will support future studies/practices at the local and national levels in the Caribbean region, which share similar challenges in terms of natural hazards and development issues.


Sign in / Sign up

Export Citation Format

Share Document