scholarly journals Permeability and the Ergun Equation as a Basis for Permeability Measurements of Metallic Foams and Wire Meshes

Author(s):  
C. Celebican ◽  
S. Tanefo ◽  
F. Durst ◽  
C. Reichel

AbstractThis paper concerns a method and a test set-up to measure the permeability of plates of metal foams and sets of wire meshes used to control flows in fluid filters and other flow systems designed to yield constant velocity distributions over large cross sections of flows. The method is based on permeability considerations using the Ergun equation to describe the pressure losses of packages of mono-dispersed spheres. One correlation is suggested for the permeability k over the entire range of mean velocities U0. A suitable measuring set-up was designed, built and used to measure the permeability of plates of metallic foams and sets of wire meshes. The specific objective of the present investigation was to provide permeability data for combined sets of wire meshes with flow properties that are mainly characterized by the wire meshes with the smallest mesh size. A method of data presentation is suggested that clearly illustrates the ranges of laminar and turbulent flows through the wire meshes. The results are compared with those for technical porous plates. The suggested presentation of the results indicates that the general features of the flows through porous plates of metal foams and wire meshes are the same.

2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


Author(s):  
Ane Bang-Kittilsen ◽  
Terje Midtbø

AbstractGeologists struggle to communicate the uncertainty that arise when mapping and interpreting the geological subsurface. Today, open data sharing policies make new value of geological information possible for a broader user group of non-experts. It is crucial to develop standard methods for visualizing uncertainty to increase the usability of geological information. In this study, a web experiment was set up to analyze whether and how different design choices influence the sense of uncertainty. Also, questions about the intuitiveness of symbols were asked. Two-hundred ten participants from different countries completed the experiment, both experts and non-experts in geology. Traditional visualization techniques in geology, like dashed lines, dotted lines and question mark, were tested. In addition, other visualizations were tested, such as hatched area and variations of symbol size, zoom levels and reference information. The results show that design choices have an impact on the participants’ assessment of uncertainty. The experts inquire about crucial information if it is not present. The results also suggest that when visualizing uncertainty, all the elements in the representation, and specifically the line and area symbols that delineate and colour the features, must work together to make the right impression.


2007 ◽  
Vol 333 ◽  
pp. 227-230
Author(s):  
Valeria Cannillo ◽  
Luca Lusvarghi ◽  
Tiziano Manfredini ◽  
M. Montorsi ◽  
Cristina Siligardi ◽  
...  

The present work was focused on glass-alumina functionally graded materials. The samples, produced by plasma spraying, were built as multi-layered systems by depositing several layers of slightly different composition, since their alumina and glass content was progressively changed. After fabricating the graded materials, several, proper characterization techniques were set up to investigate the gradient in composition, microstructure and related performances. A particular attention was paid to the observation of the graded cross sections by scanning electron microscopy, which allowed to visualize directly the graded microstructural changes. The scanning electron microscopy (SEM) inspection was integrated with accurate mechanical measurements, such as systematic depth-sensing Vickers microindentation tests performed on the graded cross sections.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000486-000493 ◽  
Author(s):  
Aditi Mallik ◽  
Roger Stout

For high power IC chips, as device size inevitably decreases, the wire diameter unfortunately must decrease due to the need of finer pitch wires. Fusing or melting of wirebonds thus increasingly becomes one of the potential failure issues for such IC's. Experiments were performed under transient loads on dummy packages having aluminum, gold, or copper wires of different dimensions. A finite element model was constructed that correlates very well with the observed maximum operating currents for such wirebonds under actual experimental test conditions. A qualitative observation of typical current profiles, as fusing conditions were approached, was that current would reach a maximum value very early in the pulse, and then fall gradually. One goal achieved through the modeling was to show that the current in the wire falls with time due to the heating of the wire material. Correspondingly, the wire reaches the melting temperature not at the peak current but rather at the end of pulse. Further, modeling shows that knowledge of external resistance and inductance of the experimental set up are highly significant in determining the details of a fusing event, but if known along with the temperature-dependent wire properties, the simulation can predict the correct voltage and current response of the part with 2% error. On the other hand, lack of external circuit characteristics may lead to completely incorrect results. For instance, the assumption that current is constant until the wire heats to fusing temperature, or that current and temperature both rise monotonically to maximum values until the wire fuses, are almost certain to be wrong. The work has been carried out for single pulse events as well as pulse trains.


2014 ◽  
Vol 69 ◽  
pp. 00005 ◽  
Author(s):  
Iulia Companis ◽  
Ludovic Mathieu ◽  
Mourad Aïche ◽  
Peter Schillebeeckx ◽  
Jan Heyse ◽  
...  

2010 ◽  
Vol 19 (05n06) ◽  
pp. 938-945 ◽  
Author(s):  
◽  
MICHAEL LANG

The CBELSA/TAPS experiment is a set up installed at the accelerator facility ELSA in Bonn. It is used to measure cross sections of hadronic reactions by observing final state particles. The set up is well suited for the identification of neutral particles such as neutrons and photons (e.g. from π0 decay). It is planed to access the major part of η and η′ photo production and decays as also strangeness. This requires a neutral trigger capability for the detector set up and a tracking detector for charged particles.


2000 ◽  
Vol 402 ◽  
pp. 109-136 ◽  
Author(s):  
AMY WARNCKE LANG ◽  
MORTEZA GHARIB

This experimental investigation into the nature of free-surface flows was to study the effects of surfactants on the wake of a surface-piercing cylinder. A better understanding of the process of vorticity generation and conversion at a free surface due to the absence or presence of surfactants has been gained. Surfactants, or surface contaminants, have the tendency to reduce the surface tension proportionally to the respective concentration at the free surface. Thus when surfactant concentration varies across a free surface, surface tension gradients occur and this results in shear stresses, thus altering the boundary condition at the free surface. A low Reynolds number wake behind a surface-piercing cylinder was chosen as the field of study, using digital particle image velocimetry (DPIV) to map the velocity and vorticity field for three orthogonal cross-sections of the flow. Reynolds numbers ranged from 350 to 460 and the Froude number was kept below 1.0. In addition, a new technique was used to simultaneously map the free surface deformation. Shadowgraph imaging of the free surface was also used to gain a better understanding of the flow. It was found that, depending on the surface condition, the connection of the shedding vortex filaments in the wake of the cylinder was greatly altered with the propensity for surface tension gradients to redirect the vorticity near the free surface to that of the surface-parallel component. This result has an impact on the understanding of turbulent flows in the vicinity of a free surface with varying surface conditions.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1087 ◽  
Author(s):  
Reza Hedayati ◽  
Alejandro Rubio Carpio ◽  
Salil Luesutthiviboon ◽  
Daniele Ragni ◽  
Francesco Avallone ◽  
...  

Studies on porous trailing edges, manufactured with open-cell Ni-Cr-Al foams with sub-millimeter pore sizes, have shown encouraging results for the mitigation of turbulent boundary-layer trailing-edge noise. However, the achieved noise mitigation is typically dependent upon the pore geometry, which is fixed after manufacturing. In this study, a step to control the aeroacoustics effect of such porous trailing edges is taken, by applying a polymeric coating onto the internal foam structure. Using this method, the internal topology of the foam is maintained, but its permeability is significantly affected. This study opens a new possibility of aeroacoustic control, since the polymeric coatings are temperature responsive, and their thickness can be controlled inside the foam. Porous metallic foams with pore sizes of 580, 800, and 1200 μm are (internally) spray-coated with an elastomeric coating. The uncoated and coated foams are characterized in terms of reduced porosity, average coating thickness and air-flow resistance. Subsequently, the coated and uncoated foams are employed to construct tapered inserts installed at the trailing edge of an NACA 0018 airfoil. The noise mitigation performances of the coated metal foams are compared to those of uncoated metal foams with either similar pore size or permeability value, and both are compared to the solid trailing edge reference case. Results show that that the permeability of the foam can be easily altered by the application of an internal coating on the metallic foams. The noise reduction characteristics of the coated foams are similar to equivalent ones with metallic materials, provided that the coating material is rigid enough not to plastically deform under flow conditions.


Nematology ◽  
2004 ◽  
Vol 6 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Kazunori Otobe ◽  
Kenji Itou ◽  
Takayuki Mizukubo

AbstractMicrostructures, consisting of networks of channels of rectangular cross sections (50 μm high, 40-200 μm wide), were formed in 5 mm square areas on transparent substrates made of silicon rubber. An experimental set-up using the network sealed with a flat glass plate has the potential to function in a way similar to the pore space in soil, and is therefore useful for studies of nematode migration. The set-up allowed the migratory activity of nematodes in water-filled, porous and transparent microstructures to be observed with a microscope. By means of substrates with two different channel dimensions, the structure-dependent behaviour of second-stage juveniles of Meloidogyne incognita was visually demonstrated. Their behaviour was examined on the basis of the migration patterns obtained by superimposing recorded serial images of individual juveniles. In a micro-channel network with 40 μm high channels of 200 μm wide elements, juveniles showed marked activity in migration, forming consistent zigzag patterns spread over the network area. In contrast, in a micro-channel network with 80 μm high channels of 400 μm wide elements, migration showed thick, sparse patterns, restricted around the area where the juveniles were initially deposited. This comparison showed that M. incognita juveniles in a narrow, fine network tended to migrate actively and, in contrast, those in a wide, coarse network were prevented from migrating by the network configuration.


Sign in / Sign up

Export Citation Format

Share Document