scholarly journals Microstructure Evolution and Mechanical Property Characterization of 6063 Aluminum Alloy Tubes Processed with Friction Stir Back Extrusion

JOM ◽  
2019 ◽  
Vol 71 (12) ◽  
pp. 4436-4444
Author(s):  
Suhong Zhang ◽  
Alan Frederick ◽  
Yiyu Wang ◽  
Mike Eller ◽  
Paul McGinn ◽  
...  

Abstract Friction stir back extrusion (FSBE) is a technique for lightweight metal extrusion. The frictional heat and severe plastic deformation of the process generate an equiaxed refined grain structure because of dynamic recrystallization. Previous studies proved that the fabrication of tube and wire structures is feasible. In this work, hollow cylindrical billets of 6063-T6 aluminum alloy were used as starting material. A relatively low extrusion ratio allows for a temperature and deformation gradient through the tube wall thickness to elucidate the effect of heat and temperature on the microstructure evolution during FSBE. The force and temperature were recorded during the processes. The microstructures of the extruded tubes were characterized using an optical microscope, energy-dispersive x-ray spectroscopy, electron backscatter diffraction, and hardness testing. The process reduced the grain size from 58.2 μm to 20.6 μm at the inner wall. The microhardness of the alloy was reduced from 100 to 60–75 HV because of the process thermal cycle.

2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


2007 ◽  
Vol 558-559 ◽  
pp. 217-222 ◽  
Author(s):  
Hai Ou Jin ◽  
Pei Dong Wu ◽  
David J. Lloyd

Two AA5754 sheets have been processed by cold rolling with 83% thickness reduction, one at room temperature and another with liquid nitrogen as coolant. The sheets were subsequently annealed at 220-275°C for 1 hour. The development of grain structure and texture was studied by optical microscope, scanning electron microscopy (SEM), X-ray diffraction and electron backscatter diffraction (EBSD) in SEM, and the mechanical property by micro-hardness testing. It has been demonstrated that the as-rolled sheets have the same micro-hardness, but the grain structures and textures are very different. Compared to the sheet processed with liquid nitrogen, the one rolled at room temperature has stronger shear texture and finer grain structure.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1406
Author(s):  
Jin Zhang ◽  
Wenfu Tan ◽  
Cheng Wang ◽  
Chunnan Zhu ◽  
Youping Yi

Cryogenic deformation can improve the strength and plasticity of Al–Li alloy, although the underlying mechanism is still not yet well understood. The effects of cryogenic temperature on the tensile properties and microstructure of an Al–Cu–Li alloy were investigated by means of tensile property test, roughness measurement, scanning electron microscope (SEM), optical microscope (OM), electron backscatter diffraction (EBSD), and transmission electron microscope (TEM). The results indicated that the strength and elongation of the as-annealed (O-state) and solution-treated (W-state) alloys increased with the decrease in deformation temperature, where the increasing trend of elongation of the W-state alloy was more significant than that of the O-state alloy. In addition, a temperature range was observed at approximately 178 K that caused the strength of the W-state alloy to slightly decrease. The decrease in temperature inhibited the dynamic recovery of the Al–Cu–Li alloy, which increased the dislocation density and the degree of work hardening, thus improving the strength of the alloy. At cryogenic temperatures, the internal grain structure was more involved in the deformation and the overall deformation was more uniform, which caused the alloy to have higher plasticity. This study provides a theoretical basis for the cryogenic forming of Al–Li alloy.


Author(s):  
Shubham Verma ◽  
Meenu Gupta ◽  
Joy Prakash Misra

Current research is an attempt to choose suitable pin-profile for friction stir welding of aviation-grade aluminum alloy (AA6082). Six tool pin-geometries (T1–T6), that is, threaded cylindrical, taper cylindrical, four slotted, square, triangular and inverted tapered with two flat faces are used to fabricate joints. Mechanical and metallurgical properties of the joints are assessed and allied with nugget zone grain size and thermal properties. The swept volume ratio and pulsating-stirring action of pin-profiles are also quantified. It is observed that square pin-profile provides joint with superior mechanical and metallurgical properties owing to higher pulsating-stirring action and sufficient swept volume ratio. The maximum tensile strength of 300 MPa is obtained by employing square pin-profile tool. Beside this, electron backscatter diffraction analysis has been conducted to critically examine the effect of pin-profiles on grains distribution of nugget zone of friction stir–welded joints. The minimum grain size of 5.48 μm is obtained using square pin-profile.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Guangjian Peng ◽  
Yi Ma ◽  
Jiangjiang Hu ◽  
Weifeng Jiang ◽  
Yong Huan ◽  
...  

Aluminum alloy AA 6061-T651 and 5A06-H112 rolled plates were successfully welded by friction stir welding (FSW) at three rotation speeds of 600, 900, and 1200 rpm with two transverse speeds of 100 and 150 mm/min. Mechanical properties and strain field evolution of FSW AA 6061-AA 5A06 were characterized by the uniaxial tension and digital image correlation (DIC) tests. Furthermore, the hardness distribution map of whole cross section was obtained via the nanoindentation method with 700 indents. Both DIC and nanoindentation results reveal that the heat-affected zone (HAZ) of AA 6061 alloy is the softest area in the weldment, and the fracture happens in this region. The microstructure evolution characterized by electron-backscatter diffraction (EBSD) indicates that the continuous dynamic recrystallization is the primary grain structure evolution in the stirring zone, and the grain refinement helps improve the mechanical properties. Analyses of the micro- and macrofeatures of the fracture surfaces via scanning electron microscopy (SEM) and optical microscope suggest that the increasing of heat input could enlarge the size of HAZ and reduce the slant angle of HAZ and thus lead the fracture angle to decrease and cause the dimples change from inclined ones to normal ones.


Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2010 ◽  
Vol 89-91 ◽  
pp. 509-514
Author(s):  
Pavel Sherstnev ◽  
Christof Sommitsch ◽  
Stefan Mitsche ◽  
Carsten Melzer

A physical model based on three types of dislocations and three nucleation sites for recrystallized grain is applied to hot rolling simulation. This model was implemented into a commercial Finite Element (FE) analysis package FORGE 2008 to calculate both the structure evolution during and the recrystallized volume fraction after hot working of aluminium alloy 5083. It is shown that the main nucleation mechanisms in the aluminium alloy are the particle stimulated nucleation (PSN) and nucleation at grain boundaries. Hence the precipitation kinetics during homogenisation was investigated by use of the thermodynamic calculation software MatCalc. To validate the simulation results hot rolling experiments were performed by means of a laboratory mill. The grain structure evolution was analysed by electron backscatter diffraction (EBSD).


2021 ◽  
Vol 1042 ◽  
pp. 3-8
Author(s):  
Mitsuhiro Watanabe ◽  
Shinpei Sasako

Dissimilar metal lap joining of A5052 aluminum alloy plate and C1100 pure copper plate was performed by using friction stir spot welding. The rotating welding tool, which was composed of a probe part and a shoulder part, was plunged from the aluminum alloy plate which was overlapped on the copper plate, and residual aluminum alloy thickness under the probe part of the welding tool after plunging of the welding tool was controlled in the range from 0 mm to 0.4 mm. The strength of the welding interface was evaluated by using tensile-shear test. Microstructure of the welding interface was examined by using an optical microscope and a field emission scanning electron microscope. The welding was achieved at the residual aluminum alloy thickness under the probe part of the welding tool below 0.3 mm. The welded area was formed at aluminum alloy/copper interface located under the probe part of the welding tool, and its width increased with decreasing the residual aluminum alloy thickness. A characteristic laminate structure was produced in the copper matrix near the welding interface. In the joint fabricated at the residual aluminum alloy thickness below 0.1 mm, hook of Cu was formed at edge of the welded area. The fracture did not occur at the welding interface. A remarkable improvement in strength was observed in the joint fabricated at the residual aluminum alloy thickness below 0.1 mm. The formation of laminate structure and hook is considered to result in joint strength improvement.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3215 ◽  
Author(s):  
Abbas Tamadon ◽  
Dirk J. Pons ◽  
Don Clucas ◽  
Kamil Sued

One of the difficulties with bobbin friction stir welding (BFSW) has been the visualisation of microstructure, particularly grain boundaries, and this is especially problematic for materials with fine grain structure, such as AA6082-T6 aluminium as here. Welds of this material were examined using optical microscopy (OM) and electron backscatter diffraction (EBSD). Results show that the grain structures that form depend on a complex set of factors. The motion of the pin and shoulder features transports material around the weld, which induces shear. The shear deformation around the pin is non-uniform with a thermal and strain gradient across the weld, and hence the dynamic recrystallisation (DRX) processes are also variable, giving a range of observed polycrystalline and grain boundary structures. Partial DRX was observed at both hourglass boundaries, and full DRX at mid-stirring zone. The grain boundary mapping showed the formation of low-angle grain boundaries (LAGBs) at regions of high shear as a consequence of thermomechanical nature of the process.


Sign in / Sign up

Export Citation Format

Share Document