L-Proline catalyzed one-pot three-component synthesis and evaluation for biological activities of tetrahydrobenzo[b]pyran: evaluation by green chemistry metrics

2021 ◽  
Vol 134 (1) ◽  
Author(s):  
PRADEEP KATE ◽  
VIKRAM PANDIT ◽  
VIVEKANAND JAWALE ◽  
MADHUSUDAN BACHUTE
2019 ◽  
Vol 16 (32) ◽  
pp. 820-832
Author(s):  
A. L. MOURA ◽  
J. F. SILVA ◽  
J. J. R. DE FREITAS ◽  
J. C. R. FREITAS ◽  
J. R. DE FREITAS FILHO

1,2,4-oxadiazoles are compounds that have attracted the attention of many researchers due to their wide range of biological activities, for example, anti-inflammatory, antimicrobial, antitumor etc. The syntheses are based mostly on the use of amidoximes and acylating agents as the initial reactants. This work aims to describe a one-pot reaction for the synthesis of 1,2,4-oxadiazols, mediated by microwave irradiation, employing home-use microwave oven, in the discipline of heterocyclic Chemistry in the postgraduate. The methodology consisted of the reaction of nitriles, hydroxylamine hydrochloride, potassium carbonate and different esters to obtain 1,2,4-oxadiazole. The reactions include two sequential procedures: base-promoted intermolecular addition of hydroxylamine to nitrile to lead to amidoxime, then treatment of the amidoxime with esther to form 1,2,4-oxadiazoles in good yields. This method represents a direct and simple protocol for the synthesis of 3,5-disubstituted 1,2,4-oxadiazoles. It was initially discussed with the students the chemistry of the oxadiazoles, one-pot reactions and green chemistry through atheoretical-expository-dialogue strategy. In the course of the didactic intervention the students, through a thematic seminary, presented the results of the analysis of the spectra from the different techniques used. With the skills acquired from completing this laboratory work, the students become well-prepared to perform spectroscopic analyzes in subsequent experiments encountered in the organic chemistry laboratory.


2019 ◽  
Vol 19 (10) ◽  
pp. 1285-1292 ◽  
Author(s):  
Kuldip D. Upadhyay ◽  
Anamik K. Shah

Background: Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. Objective: The present study is aimed to evaluate a new series of pyrano[3,2-c]quinoline scaffolds derived from the fusion of bioactive quinolone pharmacophore with structurally diverse aryl substituted chromene for its cytotoxicity. Methods: A library of pyrano[3,2-c]quinoline analogues was prepared from one-pot multi component synthesis using various aromatic aldehydes, malononitrile and 2,4-dihydroxy-1-methylquinoline. The new synthetics were primarily screened for its cytotoxicity (IC50) against different human cancer cell lines in vitro. The promising synthetics were further evaluated in vitro for their potency against different kinase activity. The promising compounds were finally tested for their in vivo efficacy in SCID type mice HCT-116 tumor model. Results: The screening results revealed that compounds 4c, 4f, 4i and 4j showed promising activity in in vitro study. However, compound 4c was found to be the most potent candidate with 23% tumor growth inhibition in HCT-116 tumor mice model. Conclusion: The structure activity relationship suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2 c]quinolone moiety seems to have an important position for cytotoxicity activity. However, 3- chloro substitution at C4 aryl ring showed a significant alteration of the bioactive conformer of the parent scaffold and outcome with compound 4c as the most potent candidate of the series.


2018 ◽  
Vol 74 (9) ◽  
pp. 1281-1284
Author(s):  
Thi Thanh Van Tran ◽  
Tuan Anh Le ◽  
Hong Hieu Truong ◽  
Thi Nhung Dao ◽  
Anatoly T. Soldatenkov ◽  
...  

The title compound, C30H34N2O9 (4), is a product of the Michael reaction of azacrown ether with dimethyl acetylenedicarboxylate modified by an addition of NH3 (aq.) at 298 K. The aza-14-crown-4-ether ring adopts a bowl conformation. The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 8.65 (5)°. The tetrahydropyridine ring has a boat conformation. The molecular conformation is supported by one N—H...O and two C—H...O intramolecular hydrogen bonds. Both heterocyclic and amino N atoms have essentially planar configurations (sums of the bond angles are 359.35 and 358.00°). Compound 4 crystallizes as a racemate consisting of enantiomeric pairs of the 1R,21S diastereomer. In the crystal, molecules of 4 are connected by N—H...O hydrogen bonds, forming chains along [100]. According to the PASS program (computer prediction of biological activities), compound 4 may exhibit antiallergic (72% probability) and antiasthmatic (67%) activity, as well as be a membrane permeability inhibitor (65%).


2021 ◽  
Vol 18 ◽  
Author(s):  
Nitishkumar S. Kaminwar ◽  
Sunil U. Tekale ◽  
Srinivas L. Nakkalwar ◽  
Rajendra P. Pawar

: Synthesis of isoxazole structural heterocyclic compounds is important due to their wide range of biological activities. In the present article, we report a convenient and easy method for the synthesis of 4-arylmethylidene-3-substituted-isoxazol-5(4H)-ones by the one-pot three-component reaction of aldehydes, β-keto ester, and hydroxylamine hydrochloride cat-alyzed by sulfated tin oxide as a heterogeneous catalyst.


2020 ◽  
Vol 7 (2) ◽  
pp. 217-225
Author(s):  
Fatemeh K. Damghani ◽  
Hamzeh Kiyani ◽  
Seied A. Pourmousavi

A one-pot three-component reaction promoted by choline chloride: zinc(II) chloride deepeutectic solvent (ChCl-ZnCl2 DES) in an aqueous medium for the synthesis of several merocyanin dyes based on isoxazol-5(4H)-ones is presented. This three-component approach is efficient, clean, experimentally simple, convenient, safe, and environmentally friendly. This reaction was performed at room temperature without using energy sources such as heat, microwave and ultrasound waves. Nonuse of toxic solvents, available materials, one-vessel, no wasted reagents, simple preparation, and recyclability of DES are other important points of this method that is significant from the perspective of green chemistry.


2019 ◽  
Vol 9 (14) ◽  
pp. 2846 ◽  
Author(s):  
Gonçalo P. Rosa ◽  
Ana M. L. Seca ◽  
Maria do Carmo Barreto ◽  
Artur M. S. Silva ◽  
Diana C. G. A. Pinto

Chalcones and flavanones are isomeric structures and also classes of natural products, belonging to the flavonoid family. Moreover, their wide range of biological activities makes them key scaffolds for the synthesis of new and more efficient drugs. In this work, the synthesis of hydroxy and/or methoxychalcones was studied using less common bases, such as sodium hydride (NaH) and lithium bis(trimethylsilyl)amide (LiHMDS), in the aldol condensation. The results show that the use of NaH was more effective for the synthesis of 2′-hydroxychalcone derivatives, while LiHMDS led to the synthesis of polyhydroxylated chalcones in a one-pot process. During this study, it was also possible to establish the conditions that favor their isomerization into flavanones, allowing at the same time the synthesis of hydroxy and/or methoxyflavanones. The chalcones and flavanones obtained were evaluated to disclose their antioxidant, anticholinesterasic, antibacterial and antitumor activities. 2′,4′,4-Trihydroxychalcone was the most active compound in terms of antioxidant, anti-butyrylcholinesterase (IC50 26.55 ± 0.55 μg/mL, similar to control drug donepezil, IC50 28.94 ± 1.76 μg/mL) and antimicrobial activity. 4′,7-Dihydroxyflavanone presented dual inhibition, that is, the ability to inhibit both cholinesterases. 4′-Hydroxy-5,7-dimethoxyflavanone and 2′-hydroxy-4-methoxychalcone were the compounds with the best antitumor activity. The substitution pattern and the biological assay results allowed the establishment of some structure/activity relationships.


Author(s):  
KRANTHI KUMAR T ◽  
SREENIVASULU R

Background and Objective: Imidazole scaffold is pervasive in pharmaceuticals and it possesses diverse type of biological activities, especially triarylimidazole derivatives are biologically prominent molecules which inspired the current investigation. The objective of the work is to synthesize 15 novel 2,4,5-triarylimidazole derivatives and evaluate their antimicrobial and antimycobacterial activity against selected bacterial and fungal strains. Methods: The title compounds 2,4,5-triaryl-imidazole were synthesized from the corresponding aryl aldehydes and keto-oximes through the cyclization to N-hydroxyimidazoles and reduced thermally to the different imidazole derivatives. Agar disc diffusion method is employed for the antimicrobial and antimycobacterial studies. Results: Fifteen novel 2,4,5-triarylimidazoles were synthesized in adequate yields and characterization of the molecules was done by detailed spectral analysis using advanced analytical support. Results disclosed that all the synthesized compounds were exhibiting antimicrobial properties. Compounds 3h, 3g, 3b, and 3m were stated to possess potent antimicrobial properties in the given bacterial and fungal strains. Conclusion: The current investigation results support the antimicrobial and antimycobacterial activity of the synthesized 2,4,5-triarylimidazole derivatives. Further, research is necessary to explore the mechanism involved in the antimicrobial activity.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 182 ◽  
Author(s):  
Edis ◽  
Haj Bloukh ◽  
Abu Sara ◽  
Bhakhoa ◽  
Rhyman ◽  
...  

Antimicrobial agents containing symmetrical triiodides complexes with halogen bonding may release free iodine molecules in a controlled manner. This happens due to interactions with the plasma membrane of microorganisms which lead to changes in the structure of the triiodide anion. To verify this hypothesis, the triiodide complex [Na(12-crown-4)2]I3 was prepared by an optimized one-pot synthesis and tested against 18 clinical isolates, 10 reference strains of pathogens and five antibiotics. The antimicrobial activities of this symmetrical triiodide complex were determined by zone of inhibition plate studies through disc- and agar-well-diffusion methods. The triiodide complex proved to be a broad spectrum microbicidal agent. The biological activities were related to the calculated partition coefficient (octanol/water). The microstructural analysis of SEM and EDS undermined the purity of the triiodide complex. The anionic structure consists of isolated, symmetrical triiodide anions [I-I-I]- with halogen bonding. Computational methods were used to calculate the energy required to release iodine from [I-I-I]- and [I-I···I]-. The halogen bonding in the triiodide ion reduces the antibacterial activities in comparison to the inhibitory actions of pure iodine but increases the long term stability of [Na(12-crown-4)2]I3.


Sign in / Sign up

Export Citation Format

Share Document