scholarly journals Silencing long intergenic non-protein coding RNA 00987 inhibits proliferation, migration, and invasion of osteosarcoma cells by sponging miR-376a-5p to regulate FNBP1 expression

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Riliang Cao ◽  
Jianli Shao ◽  
Wencai Zhang ◽  
Yongxin Lin ◽  
Zerong Huang ◽  
...  

AbstractHigh expression of long intergenic non-protein coding RNA 987 (LINC00987) is strongly associated with low overall survival of osteosarcoma; however, its role in osteosarcoma remains unclear. This study explored the biological function and underlying mechanism of LINC00987 in osteosarcoma. In this study, LINC00987 expression in osteosarcoma cells was analyzed using Cancer Cell Line Encyclopedia and qRT-PCR. The proliferation and migration and invasion in osteosarcoma cells were evaluated using Cell Counting Kit-8 and Transwell assays, respectively. Bioinformatic analysis was used to predict the LINC00987-bound miRNAs and miR-376a-5p-bound mRNAs. Dual-luciferase reporter assays were used to assess the interaction between miR-376a-5p, LINC00987, and forming-binding protein 1 (FNBP1). FNBP1 expression was measured by western blotting. LINC00987 was found to be upregulated in osteosarcoma cells. LINC00987 silencing suppressed proliferation, migration, and invasion of osteosarcoma cells. Additionally, miR-376a-5p expression was downregulated in osteosarcoma cells. miR-376a-5p knockdown reversed the effect of LINC00987 silencing on the biological function of osteosarcoma cell. miR-376a-5p was found to target LINC00987 and FNBP1. FNBP1protein level was increased in osteosarcoma cells; however, it was inhibited by silencing LINC00987 and enhanced by silencing miR-376a-5p. In conclusions, this study suggests LINC00987 silencing inhibits osteosarcoma cell proliferation, migration, and invasion by sponging miR-376a-5p to regulate FNBP1 expression. LINC00987 as a potential therapeutic target for osteosarcoma.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huixian Zhang ◽  
Hao Zhang ◽  
Xingya Li ◽  
Siyuan Huang ◽  
Qianqian Guo ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to exert crucial functions in regulating the progression of human cancers. However, the function and mechanism of long intergenic non-protein coding RNA 01089 (LINC01089) in non-small cell lung cancer (NSCLC) have not been revealed. Methods The expression level of LINC01089, microRNA (miRNA, miR)-152-3p and phosphatase and tensin homolog deleted onc hromosome ten (PTEN) mRNA was detected by quantitative real-time PCR (qRT-PCR). After gain-of-function and loss-of-function models were established with NSCLC cell lines, the proliferation, migration and invasion of NSCLC cells were detected by cell counting kit-8 (CCK-8) assay, scratch healing assay, Transwell assay, respectively. Dual luciferase reporter assay was employed to validate the binding relationship between miR-152-3p and LINC01089 or the 3’UTR of PTEN. Western blot was used to detect PTEN expression in NSCLC cells after LINC01089 and miR-152-3p were selectively modulated. Results LINC01089 was down-regulated in NSCLC tissues and cells. Functional experiments showed that knockdown of LINC01089 could promote the proliferation, migration and invasion of NSCLC cells, while over-expression of LINC01089 had the opposite effects. miR-152-3p was identified as a functional target for LIN01089, and miR-152-3p could reverse the function of LINC01089. Additionally, LINC01089 could up-regulate the expression level of PTEN via repressing miR-152-3p. Conclusions Down-regulation of LINC01089 promoted the progression of NSCLC through regulating miR-152-3p/PTEN axis.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


Author(s):  
Yang Yang ◽  
Jiashu Li ◽  
Yingying Zhou ◽  
Wen Dai ◽  
Weiping Teng ◽  
...  

Elevated thyroid stimulating hormone (TSH) is associated with an increased risk of spontaneous abortion (SA); however, the associated mechanism remains unclear. This study aimed to investigate the expression of microRNAs (miRNAs) and pathogenesis in the chorionic villi of TSH > 2.5 mIU/L-related SA patients. The chorionic villi were collected from pregnant women in the first trimester with TSH > 2.5 mIU/L with or without SA, as well as TSH < 2.5 mIU/L with or without SA to determine the level of miRNA expression. Differentially expressed miRNAs were confirmed by qRT-PCR in a total of 92 subjects. Cell counting kit-8 (CCK8), wound healing, transwell assays, and Western blotting were used to measure cellular biological functions and related protein in HTR-8/SVneo cells. The potential mechanisms were determined using a Luciferase reporter assay and rescue experiment. Compared with normal pregnant women, miR-17-5p was decreased and zinc finger protein 367 (ZNF367) was upregulated in the chorionic villi of TSH > 2.5 mIU/L-related SA patients. Using HTR-8/SVneo cells, we demonstrated that elevated TSH inhibited miR-17-5p expression, as well as trophoblast migration and invasion. The overexpression of miR-17-5p targeted and inhibited ZNF367 expression promoting the biological function of trophoblasts. Further studies confirmed that ZNF367 interference partially reversed the biological function of the miR-17-5p inhibitor on HTR-8/SVneo cells. Taken together, our results showed that miR-17-5p promoted biological function of trophoblasts by suppressing ZNF367.


Author(s):  
Feng Jiang ◽  
Yan Shi ◽  
Hong Lu ◽  
Guojun Li

Armadillo repeat-containing protein 8 (ARMC8) plays an important role in regulating cell migration, proliferation, tissue maintenance, signal transduction, and tumorigenesis. However, the expression pattern and role of ARMC8 in osteosarcoma are still unclear. In this study, our aims were to examine the effects of ARMC8 on osteosarcoma and to explore its underlying mechanism. Our results demonstrated that ARMC8 was overexpressed in osteosarcoma cell lines. Knockdown of ARMC8 significantly inhibited osteosarcoma cell proliferation in vitro and markedly inhibited xenograft tumor growth in vivo. ARMC8 silencing also suppressed the epithelial‐mesenchymal transition (EMT) phenotype, as well as inhibited the migration and invasion of osteosarcoma cells. Furthermore, knockdown of ARMC8 obviously inhibited the expression of β-catenin, c-Myc, and cyclin D1 in MG-63 cells. In conclusion, this report demonstrates that ARMC8 silencing inhibits proliferation and invasion of osteosarcoma cells. Therefore, ARMC8 may play an important role in the development and progression of human osteosarcoma and may represent a novel therapeutic target in the treatment of osteosarcoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Baojie Kang ◽  
Caihong Qiu ◽  
Ying Zhang

The lncRNA small nucleolar host gene 3 (SNHG3) was discovered to play an important role in the occurrence and development of lung adenocarcinoma (LUAD). However, the underlying molecular mechanism of SNHG3 in LUAD remains unclear. In the present study, SNHG3 expression levels in LUAD tissues and cell lines were analyzed using reverse transcription-quantitative PCR. The effects of SNHG3 on the proliferation, apoptosis, migration, and invasion of LUAD cells were determined using Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and Transwell chamber assays, respectively. The specific underlying mechanism of SNHG3 in LUAD was investigated using bioinformatics analysis and a dual luciferase reporter assay. The results revealed that SNHG3 expression levels were downregulated in LUAD tissues and cell lines. Functionally, SNHG3 overexpression suppressed the proliferation, migration, and invasion of LUAD cells, while promoting apoptosis. Mechanistically, microRNA- (miR-) 890 was identified as a potential target of SNHG3, and its expression was negatively regulated by SNHG3. Notably, SNHG3 was found to promote LUAD progression by targeting miR-890. In conclusion, the findings of the present study revealed that lncRNA SNHG3 promoted the occurrence and progression of LUAD by regulating miR-890 expression.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Junjie Wang ◽  
Jiangdong Ni ◽  
Deye Song ◽  
Muliang Ding ◽  
Jun Huang ◽  
...  

Abstract Osteosarcoma is a malignant bone tumour with the lowest survival rates out of all paediatric cancers and is primarily diagnosed in children and adolescents. MNAT1 is a subunit in the cyclin-dependent kinase-activating kinase complex. Abnormal up-regulation of MNAT1 has been associated with the poor prognosis of multiple cancers. Bioinformatics analysis showed that has-circ-0001146 and miR-26a-5p were involved in the regulation of MNAT1 in osteosarcoma. The present study investigated the regulatory effects of has-circ-0001146 and miR-26a-5p on MNAT1 expression using luciferase reporter and RNA-pull down assays. The effects of the has-circ-0001146/miR26a-5p/Mnat1 network on the proliferation and invasion of osteosarcoma were evaluated by cell viability, apoptosis, migration, and invasion assays. Osteosarcoma tissues showed higher MNAT1 and has-circ-0001146 expression than adjacent normal tissues, although the expression of MNAT1 was not significantly up-regulated in sarcomas according to TCGA databases. As indicated by luciferase reporter and RNA-pull down assays, miR-26a-5p was able to bind to both has-circ-0001146 and MNAT1 mRNA. The depletion of has-circ-0001146 as well as the increase of miR-26a-5p decreased MNAT1 expression in osteosarcoma cells, while the reduction of miR-26a-5p was associated with increased MNAT1 expression. These data suggested that has-circ-0001146 promoted MNAT1 expression by competitively binding to miR-26a-5p with MNAT1 mRNA. The depletion of has-circ-0001146 or MNAT1 or the increase of miR-26a-5p inhibited osteosarcoma cell viability and invasion, and increased apoptosis. Reduction of miR-26a-5p conversely promoted osteosarcoma cell viability and invasion. The present study confirmed that has-circ-0001146 blocked miR-26a-5p targeting MNAT1 in osteosarcoma cells, thereby promoting the malignant behaviours of osteosarcoma cells.


2018 ◽  
Vol 51 (3) ◽  
pp. 1364-1375 ◽  
Author(s):  
Dan Fei ◽  
Xiaona Zhang ◽  
Jinxiang Liu ◽  
Long Tan ◽  
Jie Xing ◽  
...  

Background/Aims: Novel long non-coding RNA Fer-1-like protein 4 (FER1L4) has been reported to play crucial regulatory roles in tumor progression. However, its clinical significance and biological role in osteosarcoma (OS) is completely unknown. The aim of the present study was to investigate the role of FER1L4 in OS progression and the underlying mechanism. Methods: We analyzed the expression levels of FER1L4 in tissues of OS patients and cell lines via quantitative RT-PCR (qRT-PCR). The effect of FER1L4 on cell proliferation, colony formation, migration and invasion was analyzed by cell counting kit-8 (CCK-8), colony formation, wound healing and transwell invasion assay, respectively. Novel targets of FER1L4 were selected through a bioinformatics soft and confirmed using a dual-luciferase reporter system and qRT-PCR. To detect the role of FER1L4 in vivo tumorigenesis, tumor xenografts were created. Results: We found that the expression of FER1L4 was significantly downregulated in OS tissues and cell lines; moreover, low expression of FER1L4 was associated with advanced tumor-nude-metastasis (TNM) stage, lymph node metastases, and poor overall survival. Functional assays showed that upregulation of FER1L4 significantly inhibited OS cell proliferation, colony formation, migration, and invasion in vitro, as well as suppressed tumor growth in vivo. Assays performed to determine the underlying mechanism, indicated that FER1L4 interacted directly with miR-18a-5p. Subsequently, we found that FER1L4 significantly increased PTEN expression, a known target of miR-18a-5p, in OS cells. Furthermore, PTEN was found to be down-regulated, and positively correlated with FER1L4 in OS tissues. Conclusion: These findings suggest that FER1L4, acting as a competing endogenous RNA (ceRNA) of miR-18a-5p, exerts its anti-cancer role by modulating the expression of PTEN. Thus, FER1L4 may be a novel target for the prevention and treatment of OS.


2020 ◽  
Vol 15 (1) ◽  
pp. 848-859
Author(s):  
Wei Wei ◽  
Liefeng Ji ◽  
Wanli Duan ◽  
Jiang Zhu

AbstractCircular RNA sterile alpha motif domain containing 4A (circSAMD4A) was found to be differentially expressed in osteosarcoma and contributed to the tumorigenesis of osteosarcoma. However, the role of circSAMD4A in doxorubicin (DXR) resistance of osteosarcoma is yet to be elucidated. Levels of circSAMD4A, microRNA (miR)-218-5p and Krüppel-like factor 8 (KLF8) were detected using quantitative reverse transcription-polymerase chain reaction. Western blot was applied to detect the protein levels of KLF8, cyclin D1 and p21. Cell viability, cell cycle, migration and invasion were analyzed using Cell Counting Kit-8 assay, flow cytometry and transwell assay, respectively. The interaction between miR-218-5p and circSAMD4A or KLF8 was verified using dual-luciferase reporter assay or RNA immunoprecipitation assay. In vivo experiments were performed using murine xenograft models. CircSAMD4A and KLF8 were elevated in osteosarcoma, and knockdown of circSAMD4A or KLF8 sensitized osteosarcoma cells to DXR by mediating resistant cell viability, migration and invasion inhibition, and cell cycle arrest in vitro. miR-218-5p was decreased in osteosarcoma, and miR-218-5p inhibition enhanced DXR resistance. Besides, miR-218-5p was found to bind to circSAMD4A or KLF8, and subsequent rescue experiments indicated that miR-218-5p inhibition reversed the inhibitory effects of circSAMD4A silencing on DXR resistance, and silencing miR-218-5p enhanced DXR resistance by targeting KLF8 in osteosarcoma cells. Moreover, circSAMD4A could indirectly regulate KLF8 via miR-218-5p. Additionally, circSAMD4A knockdown enhanced the cytotoxicity of DXR in osteosarcoma in vivo via regulating miR-218-5p and KLF8. In all, circSAMD4A enhanced cell DXR resistance in osteosarcoma by regulating the miR-218-5p/KLF8 axis, suggesting a novel therapeutic target for therapy-resistant osteosarcoma.


2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Min Pan ◽  
Qiuqiu Chen ◽  
Yusong Lu ◽  
Feifei Wei ◽  
Chunqiao Chen ◽  
...  

Abstract MicroRNA-106b-5p (miR-106b-5p) is involved in the development of many cancers including colorectal cancer (CRC), and FAT4 is correlated with regulation of growth and apoptosis of cancer cells. The present study aimed to investigate the relation between FAT4 and miR-106b-5p and the underlying mechanism of the two on the development of CRC. Quantitative real-time PCR (qRT-PCR) assay and Western blot (WB) analysis were performed to detect the expressions of messenger RNAs (mRNAs), microRNAs (miRNAs) and proteins. The viability of CRC cells was detected by cell counting kit-8 (CCK-8). Scratch test and transwell assay were performed to measure the migration and invasion of CRC cell. Tumor angiogenesis was simulated by in vitro angiogenesis experiment. Dual-luciferase reporter assay was performed to verify the targeting relation between miR-106b-5p and FAT4. The study found that the expression of FAT4 was down-regulated and that of miR-106b-5p was up-regulated in CRC tissues. Overexpression of FAT4 resulted in decreased proliferation, migration, invasion and angiogenesis of CRC cells, whereas silencing of FAT4 led to the opposite results. In rescue experiment, miR-106b-5p partially reversed the function of FAT4 in CRC cells, thus playing a carcinogenic role by targeting FAT4 in the CRC cells.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Lei Zhang ◽  
Pin Zhang ◽  
Xiangyi Sun ◽  
Liwu Zhou ◽  
Jianning Zhao

Osteoarthritis (OA) is one of the most common chronic joint disease. Long non-coding RNAs (lncRNAs) have been confirmed to play important roles in a variety of diseases including OA. However, the underlying mechanism of lncRNA differentiation antagonizing non-protein coding RNA (DANCR) in OA has not been well elucidated. The expression of DANCR in cartilage tissues from OA patients was detected using quantitative real-time PCR. After cell transfection, the effects of DANCR inhibition on the proliferation, apoptosis and inflammatory factors of OA chondrocytes were detected using Cell Counting Kit-8 assay and flow cytometry assay. Novel target of DANCR was then identified through bioinformatics analysis and confirmed by luciferase reporter assay and RNA immunoprecipitation assay. The expression of DANCR was significantly increased in OA patients. Function assays demonstrated that DANCR suppression inhibited the proliferation, inflammation, and promoted apoptosis of chondrocytes cells. Additionally, DANCR regulated survival of OA chondrocytes through acting as a competitive endogenous RNA for miR-216a-5p. Furthermore, JAK2 was a direct target of miR-216a-5p, and DANCR regulated the JAK2/STAT3 signal pathway through miR-216a-5p in OA chondrocytes. In the present study, we concluded that DANCR promoted the proliferation, inflammation, and reduced cell apoptosis in OA chondrocytes through regulating miR-216a-5p/JAK2/STAT3 signaling pathway, indicating DANCR might be a useful biomarker and potential therapeutic target for OA treatment.


Sign in / Sign up

Export Citation Format

Share Document