scholarly journals Experimental study of shale drillability with different bedding inclinations under varying wellbore pressure conditions

2021 ◽  
Vol 11 (4) ◽  
pp. 1751-1759
Author(s):  
Shuai Chen ◽  
Xiangchao Shi ◽  
Heng Bao ◽  
Leiyu Gao ◽  
Jie Wu

AbstractIn the practice of shale gas development engineering, it is important to understand the physical and mechanical properties of shale. The bedding inclinations of shale are known to significantly influence its physical and mechanical properties. This study mainly examined the influence of bedding inclinations on drillability under different wellbore pressures. The bedding inclinations used in this study varied from 0° to 90°, with a gradient of 15°. The wellbore pressure values used varied from 0 to 25 MPa, with a gradient of 5 MPa. The results show that the drillability index of shale increases exponentially with increasing wellbore pressure at different bedding inclinations. The proposed exponential empirical model can describe the relationship between the drillability index and wellbore pressure. When the wellbore pressure is less than 15 MPa, bedding inclinations significantly influence the drillability index, and the drillability index of shale shows a “W”-type variation trend as the bedding inclinations increase in the range of 0° to 90°. The influence of bedding inclinations on drillability decreases gradually with increasing wellbore pressure. When the wellbore pressure increases to 25 MPa, the impact of bedding inclinations on drillability is virtually undetectable. The results of this study can provide reasonably insight into the effect of bedding inclinations on shale deformation under the drill bit, and useful prediction for the drillability index under in situ conditions.

2021 ◽  
Vol 15 ◽  
pp. 181-188
Author(s):  
M. V. Klychnikova ◽  
Kyaw Ye Ko

In this work, it is shown that the method of the in situ preparation of Cu/LLDPE by combining the formation of a composite and a nanodispersed phase in the viscous-flow state of a polymer makes it possible to achieve a uniform distribution of nanoparticles in the matrix and effectively regulate their mechanical and functional properties. The optimal concentration of Cu nanofiller was found to be 2-5%, allowing to achieve the best mechanical properties. Comparative analysis of the physical and mechanical properties of Cu/LLDPE nanocomposites obtained by various methods shows that the deformation and strength characteristics of the 3CuLLDPE nanocomposite obtained by the in situ method are improved in comparison with the properties of the 3CuLLDPE nanocomposite, prepared by ex situ method. The relationship between the filler content and the modulus of elasticity/tensile strength has been determined. With an increase in the filler content, the elastic modulus increases by 10-20%, and the tensile strength decreases by 30%. Elongation at break for samples with nanofiller content up to 3 wt. % higher than unfilled polymer


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


2015 ◽  
Vol 130 (1) ◽  
pp. 25-31 ◽  
Author(s):  
S Degeest ◽  
P Corthals ◽  
I Dhooge ◽  
H Keppler

AbstractObjective:This study aimed to determine the characteristics of tinnitus and tinnitus-related variables and explore their possible relationship with tinnitus-related handicap.Methods:Eighty-one patients with chronic tinnitus were included. The study protocol measured hearing status, tinnitus pitch, loudness, maskability and loudness discomfort levels. All patients filled in the Tinnitus Sample Case History Questionnaire, the Hyperacusis Questionnaire and the Tinnitus Handicap Inventory. The relationship of each variable with the Tinnitus Handicap Inventory score was evaluated by univariate and multivariate analyses.Results:Five univariables were associated with the Tinnitus Handicap Inventory score: loudness discomfort level, subjective tinnitus loudness, tinnitus awareness, noise intolerance and Hyperacusis Questionnaire score. Multiple regression analysis showed that the Hyperacusis Questionnaire score and tinnitus awareness were independently associated with the Tinnitus Handicap Inventory score.Conclusion:Hyperacusis and tinnitus awareness were independently associated with the Tinnitus Handicap Inventory score. Questionnaires on tinnitus and hyperacusis are especially suited to providing additional insight into tinnitus-related handicap and are therefore useful for evaluating tinnitus patients.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 713-723
Author(s):  
Wei Gong ◽  
Tuan-Hui Jiang ◽  
Xiang-Bu Zeng ◽  
Li He ◽  
Chun Zhang

AbstractThe effects of the cell size and distribution on the mechanical properties of polypropylene foam were simulated and analyzed by finite element modeling with ANSYS and supporting experiments. The results show that the reduced cell size and narrow size distribution have beneficial influences on both the tensile and impact strengths. Decreasing the cell size or narrowing the cell size distribution was more effective for increasing the impact strength than the tensile strength in the same case. The relationship between the mechanical properties and cell structure parameters has a good correlation with the theoretical model.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1543
Author(s):  
Francisca Guadalupe Cabrera-Covarrubias ◽  
José Manuel Gómez-Soberón ◽  
Carlos Antonio Rosas-Casarez ◽  
Jorge Luis Almaral-Sánchez ◽  
Jesús Manuel Bernal-Camacho

The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.


2020 ◽  
Author(s):  
Jackie E. Kendrick ◽  
Lauren N. Schaefer ◽  
Jenny Schauroth ◽  
Andrew F. Bell ◽  
Oliver D. Lamb ◽  
...  

Abstract. Volcanoes represent one of the most critical geological settings for hazard modelling due to their propensity to both unpredictably erupt and collapse, even in times of quiescence. Volcanoes are heterogeneous at multiple scales, from porosity which is variably distributed and frequently anisotropic to strata that are laterally discontinuous and commonly pierced by fractures and faults. Due to variable and, at times, intense stress and strain conditions during and post-emplacement, volcanic rocks span an exceptionally wide range of physical and mechanical properties. Understanding the constituent materials' attributes is key to improving the interpretation of hazards posed by the diverse array of volcanic complexes. Here, we examine the spectrum of physical and mechanical properties presented by a single dome-forming eruption at a dacitic volcano, Mount Unzen (Japan) by testing a number of isotropic and anisotropic lavas in tension and compression and using monitored acoustic emission (AE) analysis. The lava dome was erupted as a series of 13 lobes between 1991–1995, and its ongoing instability means much of the volcano and its surroundings remain within an exclusion zone today. During a field campaign in 2015, we selected 4 representative blocks as the focus of this study. The core samples from each block span range in porosity from 9.14 to 42.81 %, and permeability ranges from 1.54 × 10−14 to 2.67 × 10−10 m2 (from 1065 measurements). For a given porosity, sample permeability varies by > 2 orders of magnitude is lower for macroscopically anisotropic samples than isotropic samples of similar porosity. An additional 379 permeability measurements on planar block surfaces ranged from 1.90 × 10−15 to 2.58 × 10−12 m2, with a single block having higher standard deviation and coefficient of variation than a single core. Permeability under confined conditions showed that the lowest permeability samples, whose porosity largely comprises microfractures, are most sensitive to effective pressure. The permeability measurements highlight the importance of both scale and confinement conditions in the description of permeability. The uniaxial compressive strength (UCS) ranges from 13.48 to 47.80 MPa, and tensile strength (UTS) using the Brazilian disc method ranges from 1.30 to 3.70 MPa, with crack-dominated lavas being weaker than vesicle-dominated materials of equivalent porosity. UCS is lower in saturated conditions, whilst the impact of saturation on UTS is variable. UCS is between 6.8 and 17.3 times higher than UTS, with anisotropic samples forming each end member. The Young's modulus of dry samples ranges from 4.49 to 21.59 GPa and is systematically reduced in water-saturated tests. The interrelation of porosity, UCS, UTS and Young's modulus was modelled with good replication of the data. Acceleration of monitored acoustic emission (AE) rates during deformation was assessed by fitting Poisson point process models in a Bayesian framework. An exponential acceleration model closely replicated the tensile strength tests, whilst compressive tests tended to have relatively high early rates of AEs, suggesting failure forecast may be more accurate in tensile regimes, though with shorter warning times. The Gutenberg-Richter b-value has a negative correlation with connected porosity for both UCS and UTS tests which we attribute to different stress intensities caused by differing pore networks. b-value is higher for UTS than UCS, and typically decreases (positive Δb) during tests, with the exception of cataclastic samples in compression. Δb correlates positively with connected porosity in compression, and negatively in tension. Δb using a fixed sampling length may be a more useful metric for monitoring changes in activity at volcanoes than b-value with an arbitrary starting point. Using coda wave interferometry (CWI) we identify velocity reductions during mechanical testing in compression and tension, the magnitude of which is greater in more porous samples in UTS but independent of porosity in UCS, and which scales to both b-value and Δb. Yet, saturation obscures velocity changes caused by evolving material properties, which could mask damage accrual or source migration in water-rich environments such as volcanoes. The results of this study highlight that heterogeneity and anisotropy within a single system not only add uncertainty but also have a defining role in the channelling of fluid flow and localisation of strain that dictate a volcano's hazards and the geophysical indicators we use to interpret them.


2017 ◽  
Vol 16 (4) ◽  
pp. 289-297
Author(s):  
D. Yu. Snezgkov ◽  
S. N. Leonovich

The existing non-destructive testing system of structure concrete is actually orientated on the usage of longitudinal acoustical waves. This is due to simplicity of technical realization for measuring velocity (time) of acoustical pulse propagation in bulk concrete. But a reverse side of simple measuring procedure is a loss of additional information on concrete which is contained in the accepted acoustical signal. Therefore usage of an ultrasonic concrete testing method is limited by assessment of its strength. Joint usage of several wave types, so-called multi-wave testing, allows to refine metrology parameters of the ultrasonic method and to gain more information while determining physical and mechanical properties of concrete in laboratory and in situ conditions. The paper considers testing of elongated concrete elements and structures by an ultrasonic pulsing method on the basis of longitudinal subsurface and Rayleigh waves. It has been proposed to use methodology for time selection of wave components according to amplitude parameter and it has been applied for standard acoustical transformers with considerable reverberation time and not possessing spatial selectivity Basic principle of the proposed methodology is visual (according to oscillogram of the received signal) determination of characteristic time moments which are used for calculation of differential value of a propagation velocity in the Rayleigh wave impulse. The paper presents results pertaining to simulation of acoustical pulse propagation on the basis of 0.15 m and data of concrete ultrasonic in situ testing on measuring bases from 0.25 to 1.75 m. Advantage of large baseline for sonic test is a possibility for execution of a hundred percent inspection for surface of large-sized elements and structures, and so there is no need to make a selective inspection in some control areas as it is stipulated by provided by existing regulations. Responsivity of the Rayleigh wave parameters to near surface concrete defects permits quickly and efficiently to detect crack areas in a reinforced structure. Energy localization of a surface wave in a layer having width λ/2–λ provides a possibility to ignore reinforcement availability under appropriate selection of oscillation frequency. In addition to this, large measuring baseline makes it possible to lower effect of concrete structural inhomogeneity on statistical stability for pulse velocity assessment that ultimately reveals a possibility to register an appearance of concrete acoustical elasticity effect under in situ conditions.


2021 ◽  
Vol 114 ◽  
pp. 70-75
Author(s):  
Radosław Auriga ◽  
Piotr Borysiuk ◽  
Alicja Auriga

An attempt to use „Tetra Pak” waste material in particleboard technology. The study investigates the effect of addition Tetra Pak waste material in the core layer on physical and mechanical properties of chipboard. Three-layer chipboards with a thickness of 16 mm and a density of 650 kg / m3 were manufactured. The share of Tetra Pak waste material in the boards was varied: 0%, 5%, 10% and 25%. The density profile was measured to determine the impact of Tetra Pak share on the density distribution. In addition, the manufactured boards were tested for strength (MOR, MOE, IB), thickness swelling and water absorption after immersion in water for 2 and 24 hours. The tests revealed that Tetra Pak share does not affect significantly the value of static bending strength and modulus of elasticity of the chipboard, but it significantly decreases IB. Also, it has been found that Tetra Pak insignificantly decreases the value of swelling and water absorption of the chipboards.


Author(s):  
Ioanna Papasolomou

This chapter reveals that the term ‘consumerism' encompasses a number of meanings which create confusion regarding the term. The discussion that follows, attempts to distinguish the different perspectives regarding the term by presenting its historical development and discussing the three definitions that have marked it. It explores the relationship between consumerism, marketing and corporate social responsibility (CSR). The growth of consumerism has led to the over-use of marketing which provided a flourishing ground for compulsive buying and consumption. There is evidence in the literature to suggest that in an era of increasing social problems and environmental challenges, there is a need for CSR and sustainable marketing. In fact, the second definition of consumerism is inextricably linked with CSR and societal marketing. The chapter is conceptual in nature and provides an in-depth review and discussion of some fundamental dimensions associated to consumerism based on the existent literature. The overarching aim is to provide an insight into the evolution and growth of consumerism based on the existent literature related to the topic. The discussion also focuses on exploring the relationship between marketing and consumerism shedding light onto compulsive buying, consumer attitudes and concerns on the micro consumerism issues, sustainable consumption and sustainable marketing. The chapter proceeds to raise some concerns related to the impact of the global economic crisis on consumerism by using as an example Cyprus based on the author's observations and thoughts. The chapter concludes with a list of suggestions to practitioners and directions for future research.


Sign in / Sign up

Export Citation Format

Share Document