scholarly journals Polyelectrolyte–nanocomposite for enhanced oil recovery: influence of nanoparticle on rheology, oil recovery and formation damage

Author(s):  
Akinleye O. Sowunmi ◽  
Vincent E. Efeovbokhan ◽  
Oyinkepreye D. Orodu ◽  
Babalola A. Oni

AbstractGum arabic (GA) capacity as an enhanced oil recovery (EOR) agent is studied and compared to the commonly applied xanthan gum (XG). FTIR and TGA characterisation of these two polyelectrolytes and a rheology study by viscosity measurement was conducted on their polymeric and nano-polymeric solution at varying concentrations of the polymers and nanoparticles (NP). Coreflooding experiments were conducted based on a sequence of waterflooding and three slugs of increasing concentration of polymeric (and nano-polymeric) solutions to evaluate EOR performance. Results show similar rheology and oil recovery for 1.0 wt% GA and a 0.1 wt% XG polymeric solution. And the viscosity of GA tends to be Newtonian at a relatively high shear rate. The magnitude of incremental oil recovery of the first slug is independent of the GA concentration but significant for XG. However, the impact of nano-polymeric solution on oil recovery is higher than the polymeric solution. The increase in NP concentration played a vital role in oil recovery, thereby connoting the significance of IFT, contact angle, and its associated mechanisms for EOR. And FTIR affirms that the hydroxyl group in XG is less than GA, thus responsible for adsorption of GA compared to XG.

2021 ◽  
pp. 79-90
Author(s):  
Т. A. Pospelova

The article discusses ways to increase the oil recovery factor in already developed fields, special attention is paid to the methods of enhanced oil recovery. The comparative structure of oil production in Russia in the medium term is given. The experience of oil and gas companies in the application of enhanced oil recovery in the fields is analyzed and the dynamics of the growth in the use of various enhanced oil recovery in Russia is estimated. With an increase in the number of operations in the fields, the requirements for the selection of candidates inevitably increase, therefore, the work focuses on hydrodynamic modeling of physical and chemical modeling, highlights the features and disadvantages of existing simulators. The main dependences for adequate modeling during polymer flooding are given. The calculation with different concentration of polymer solution is presented, which significantly affects the water cut and further reduction of operating costs for the preparation of the produced fluid. The possibility of creating a specialized hydrodynamic simulator for low-volume chemical enhanced oil recovery is considered, since mainly simulators are applicable for chemical waterflooding and the impact is on the formation as a whole.


2018 ◽  
Vol 3 (44) ◽  
pp. 12461-12468
Author(s):  
Lei Jiang ◽  
Jingtao Sun ◽  
Jiqian Wang ◽  
Qi Xue ◽  
Songyan Li ◽  
...  

2021 ◽  
Author(s):  
Abiola Oyatobo ◽  
Amalachukwu Muoghalu ◽  
Chinaza Ikeokwu ◽  
Wilson Ekpotu

Abstract Ineffective methods of increasing oil recovery have been one of the challenges, whose solutions are constantly sought after in the oil and gas industry as the number of under-produced reservoirs increases daily. Water injection is the most extended technology to increase oil recovery, although excessive water production can pose huge damage ranging from the loss of the well to an increase in cost and capital investment requirement of surface facilities to handle the produced water. To mitigate these challenges and encourage the utilization of local contents, locally produced polymers were used in polymer flooding as an Enhanced Oil Recovery approach to increase the viscosity of the injected fluids for better profile control and reduce cost when compared with foreign polymers as floppan. Hence this experimental research was geared towards increasing the efficiency of oil displacement in sandstone reservoirs using locally sourced polymers in Nigeria and also compared the various polymers for optimum efficiency. Starch, Ewedu, and Gum Arabic were used in flooding an already obtained core samples and comparative analysis of this shows that starch yielded the highest recovery due to higher viscosity value as compared to Ewedu with the lowest mobility ratio to Gum Arabic. Finally, the concentration of Starch or Gum Arabic should be increased for optimum recovery.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
M. P. Amaya-Gómez ◽  
L. M. Sanabria-Rivas ◽  
A. M. Díaz-Lasprilla ◽  
C. Ardila-Suárez ◽  
R. H. Castro-García ◽  
...  

Polymer and surfactant flooding are widely applied processes in enhanced oil recovery (EOR) in which viscous polymers or surfactants aqueous solutions are introduced in oil reservoirs to rise the recovery of the remaining oil. In this regard, one of the challenges of EOR practices is the use of efficient but low-cost viscosifier and surfactant polymers. This work is aimed at synthesizing a polyglycerol derived from the biodegradable and nontoxic monomer, glycerol, and evaluating the effect of its copolymerization on rheological and interfacial properties, which were tested in water and brine for the former and in the water/oil system for the last properties. The copolymers were synthesized using a polyglycerol backbone, acrylic acid, lactic acid, and oleic acid. The chemical structure of copolymers was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and differential scanning calorimetry (DSC). The viscosity and the interfacial tension (IFT) of polymeric solutions were tested. Thus, the viscosity and surface performance of the prepared polymer solutions in distilled water and brine were analyzed according to the structure of the synthesized polymers. The results showed that the synthesized polymers modified water viscosity and surface tension between water and oil. The developed polymers could be candidates for applications in enhanced oil recovery and related applications.


Fuel ◽  
2020 ◽  
Vol 280 ◽  
pp. 118512 ◽  
Author(s):  
Tatiana Oliveira do Vale ◽  
Roberta Santoro de Magalhães ◽  
Paulo Fernando de Almeida ◽  
Josilene Borges Torres Lima Matos ◽  
Fábio Alexandre Chinalia

2021 ◽  
Author(s):  
Chukwunonso Uche ◽  
Samuel Esieboma ◽  
Jennifer Uche ◽  
Ibrahim Bukar

Abstract An evaluation of potential EOR processes applicable in the marginal oil field operation of the Niger Delta region is presented. Technical feasibility, process availability, oil recovery potential, and other uncertainties and risks associated with exploitation of enhanced oil recovery technique in a marginal oil field environment are being assessed. Few Enhanced oil recovery processes, namely polymer flooding, chemical flooding and microbial EOR (MEOR), are considered for possible application in this marginal oil field. The objective of the screening study is to evaluate and rank the EOR options and also select the most attractive method that will have to be further chased to a pilot test stage. Emphasis is strictly on a technical assessment of the incremental oil potential of each of the EOR methods and also identification of critical operational and logistical components of the entire process for their implementation in the offshore operating environment. Recoverable volumes associated with EOR may be significant, but key project development and implementation challenges and extra cost elements must be considered in any EOR forecast for an effective EOR process ranking. Some of these concerns (e.g. Polymer/chemical supply, facilities requirements, and the impact of EOR on reservoir performance and wellbore integrity) may be significant enough to eliminate a method from being considered further and at that point the best EOR option that requires minimal cost exposure for achieving the best recoverable shall be considered. Moreso, there is consideration of the quantity and quality of laboratory data that should support the viability of each EOR process being considered. This paper narrates the state of technical readiness for field implementation of each EOR method and identifies remaining work required to progress EOR process in this marginal oil field.


2021 ◽  
Author(s):  
Bogdan-George Davidescu ◽  
Mathias Bayerl ◽  
Christoph Puls ◽  
Torsten Clemens

Abstract Enhanced Oil Recovery pilot testing aims at reducing uncertainty ranges for parameters and determining operating conditions which improve the economics of full-field deployment. In the 8.TH and 9.TH reservoirs of the Matzen field, different well configurations were tested, vertical versus horizontal injection and production wells. The use of vertical or horizontal wells depends on costs and reservoir performance which is challenging to assess. Water cut, polymer back-production and pressures are used to understand reservoir behaviour and incremental oil production, however, these data do not reveal insights about changes in reservoir connectivity owing to polymer injection. Here, we used consecutive tracer tests prior and during polymer injection as well as water composition to elucidate the impact of various well configurations on sweep efficiency improvements. The results show that vertical well configuration for polymer injection and production leads to substantial acceleration along flow paths but less swept volume. Polymer injection does not only change the flow paths as can be seen from the different allocation factors before and after polymer injection but also the connected flow paths as indicated by a change in the skewness of the breakthrough tracer curves. For horizontal wells, the data shows that in addition to acceleration, the connected pore volume after polymer injection is substantially increased. This indicates that the sweep efficiency is improved for horizontal well configurations after polymer injection. The methodology leads to a quantitative assessment of the reservoir effects using different well configurations. These effects depend on the reservoir architecture impacting the changes in sweep efficiency by polymer injection. Consecutive tracer tests are an important source of information to determine which well configuration to be used in full-field implementation of polymer Enhanced Oil Recovery.


2021 ◽  
Author(s):  
Da Zhu ◽  
Mohan Sivagnanam ◽  
Ian Gates

Abstract Supersonic gas injection can help deliver gas uniformly to a reservoir, regardless of reservoir conditions. This technology has played a key role in enhanced oil recovery (EOR) and in particular, thermal enhanced oil recovery operations. Most previous studies have focused on single phase gas injection whereas in most field applications, multiphase and multicomponent situations occur. In the research documented in this paper, we report on results of evaluations of compressible multiphase supersonic gas flows in which gas is the continuous phase is seeded with dispersed liquid droplets or solid particles. Theoretical derivation and numerical simulations with and without relative motions between continuous and disperse phases are examined first. The results illustrate that the shock wave structures and flow properties associated with the multiphase gas flows are different than that of single-phase isentropic flows. The existence and importance of relaxation zones after the normal shock wave in multiphase flow is described. Numerical computational fluid dynamics (CFD) simulations are conducted to show how the multiphase multicomponent flow affects gas phase injection under different conditions. The impact of solid/liquid mass loading on flow performance is discussed. Finally, the practical application of the findings is discussed.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Mukhtar Elturki ◽  
Abdulmohsin Imqam

Summary Gas-enhanced oil recovery is one of the most advantageous enhanced oil recovery methods. Nitrogen is one of the most investigated gases because of its beneficial properties. However, during its interaction with crude oil, nitrogen can induce asphaltene deposition, which may result in severe formation damage and pore plugging. Few works have investigated the impact of nitrogen on asphaltene instability. This research studied the immiscibility conditions for nitrogen in nanopores and the impact of nitrogen on asphaltene precipitations, which could lead to plugging pores and oil recovery reduction. A slimtube was used to determine the minimum miscibility pressure (MMP) of nitrogen to ensure that all the experiments would be carried out below the MMP. Then, filtration experiments were conducted using nanofilter membranes to highlight the impact of the asphaltene particles on the pores of the membranes. A special filtration vessel was designed and used to accommodate the filter paper membranes. Various factors were investigated, including nitrogen injection pressure, temperature, nitrogen mixing time, and pore size heterogeneity. Supercritical phase nitrogen was used during all filtration experiments. Visualization tests were implemented to observe the asphaltene precipitation and deposition mechanism over time. Increasing the nitrogen injection pressure resulted in an increase in the asphaltene weight percent in all experiments. Decreasing the pore size of the filter membranes resulted in an increase in the asphaltene weight percent. Greater asphaltene weight percents were observed with a longer nitrogen mixing time. Visualization tests revealed that asphaltene clusters started to form after 1 hour and fully deposited after 12 hours in the bottom of the test tubes. Chromatography analysis of the produced oil confirmed that there was a reduction in the heavy components and asphaltene weight percent. Microscopy and scanning electron microscopy (SEM) imaging of the filter paper membranes found that significant pore plugging resulted from asphaltene deposition and precipitation. This research investigated asphaltene precipitation and deposition during immiscible nitrogen injection to understand the main factors that impact the success of using such a technique in unconventional shale reservoirs.


Sign in / Sign up

Export Citation Format

Share Document