Mesoporous activated carbon produced from coconut shell using a single-step physical activation process

2018 ◽  
Vol 8 (3) ◽  
pp. 711-718 ◽  
Author(s):  
Wen-Tien Tsai ◽  
Tasi-Jung Jiang
Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 238
Author(s):  
Yu-Quan Lin ◽  
Wen-Tien Tsai

In this work, a mesoporous activated carbon (AC) was prepared from a unique lignocellulosic biomass (water caltrop husk) in triplicate using a single-step physical activation process at lower temperature (i.e., 750 °C) and longer holding time (i.e., 90 min). Based on the pore properties and adsorption properties for removal of methylene blue (MB) as organic pollutant, the results proved that the resulting AC possesses a mesoporous feature with the Brunauer–Emmett–Teller (BET) surface area of 810.5 m2/g and mesopore volume of about 0.13 cm3/g. Due to its fast adsorption rate and maximal adsorption capacity fitted (126.6 mg/g), the mesoporous carbon material could be used as an excellent adsorbent for liquid-phase removal of MB. In addition, the pseudo-second-order model is well suited for describing the adsorption system between the cationic adsorbate and the resulting AC with oxygen surface groups.


2013 ◽  
Vol 594-595 ◽  
pp. 240-244
Author(s):  
Nor Adilla Rashidi ◽  
Suzana Yusup ◽  
Azry Borhan

The objective of this research is to synthesize the microporous activated carbon and test its applicability for CO2gas capture. In this study, coconut shell-based and commercial activated carbon is used as the solid adsorbent. Based on the findings, it shows that the gas adsorption capacity is correlated to the total surface area of the materials. In addition, reduction in the adsorption capacity with respect to temperature proves that the physisorption process is dominant. Higher carbon dioxide (CO2) adsorption capacity in comparison to nitrogen (N2) capacity contributes to higher CO2/N2selectivity, and confirms its applicability in the post-combustion process. Utilization of abundance agricultural wastes and one-step physical activation process is attractive as it promotes a cleaner pathway for activated carbon production, and simultaneously, reduces the total operating cost.


2017 ◽  
Vol 29 (1) ◽  
pp. 9-13
Author(s):  
Masuma Sultana Ripa ◽  
Rafat Mahmood ◽  
Sabrina Khan ◽  
Easir A Khan

Adsorption separation of phenol from aqueous solution using activated carbon was investigated in this work. The adsorbent was prepared from coconut shell and activated by physical activation method. The coconut shell was first carbonized at 800°C under nitrogen atmosphere and activated by CO2 at the same temperature for one hour. The prepared activated carbon was characterized by Scanning Electron Microscope (SEM) and BET Surface Analyzer and by the determination of iodine number as well as Boehm titration. The iodine number indicates the degree of relative activation of the adsorbent. The equilibrium adsorption isotherm phenol from aqueous solution was performed using liquid phase batch adsorption experiments. The effect of experimental parameters including solution pH, agitation time, particle size, temperature and initial concentration was investigated. The equilibrium data was analyzed using Langmuir and Freundlich adsorption model to describe the adsorption isotherm and estimate the adsorption isotherm parameters. The results indicate the potential use of the adsorbent for removal of phenol from the aqueous solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 9-13


2015 ◽  
Vol 1107 ◽  
pp. 347-352 ◽  
Author(s):  
Collin Glen Joseph ◽  
Duduku Krishniah ◽  
Yun Hin Taufiq-Yap ◽  
Masnah Massuanna ◽  
Jessica William

Abstract. Waste tires, which are an abundant waste product of the automobile industry, were used to prepare activated carbon by means of physical and chemical activation. A two-stage process was used, with a semi-carbonization stage as the first stage, followed by an activation stage as the second stage.All experiments were conducted in a laboratory-scale muffle furnace under static conditions in a self-generated atmosphere. During this process, the effects of the parametric variables of semi-carbonization time (for the physical activation process), activation time and temperature and impregnation ratios (for the chemical activation process) on the percentage yield were studied and compared. Varying these parametric variables yielded interesting results, which in turn affected the adsorption process of 2,4-DCP, which was the simulated pollutant in aqueous form. The optimized percentage yields of activated carbon that were obtained were 41.55% and 44.88% ofthe physical and chemical activation treatment processes respectively.Keywords: Physical activation, chemical activation, waste rubber tires, 2,4-dichlorophenol, activated carbon.


2012 ◽  
Vol 3 ◽  
pp. 84-92 ◽  
Author(s):  
Nor Adilla Rashidi ◽  
Suzana Yusup ◽  
Murni M. Ahmad ◽  
Norani Muti Mohamed ◽  
Bassim H. Hameed

2017 ◽  
Vol 889 ◽  
pp. 215-220 ◽  
Author(s):  
Siti Anis Mohd Amran ◽  
Khudzir Ismail ◽  
Azil Bahari Alias ◽  
Syed Shatir Asghrar Syed-Hassan ◽  
Ali H. Jawad

Single and mixed coconut shell (CS) and palm kernel shell (PKS) were successfully converted to activated carbon by using potassium hydroxide (KOH) as activating agent. Mixed activated carbon was produced from coconut shell: palm kernel shell at different KOH concentrations of 30%, 40% and 50%. Activation process was performed in a conventional microwave oven at fixed power and time of 600W and 20 minutes respectively. The results showed that activated carbon produced from single and mixed biomass at 40% concentration of KOH exhibited higher adsorption capacity for iodine number and percentage removal of MB with comparison to 30% and 50% of KOH concentrations. The highest BET surface area of 441.19 m2/g was obtained by CSAc-40. Further both CSAc-40 and PKSAc-40 produced an average pore size diameter of less than 2.0 nm which is in the range of micropore region. On contrary, the mixed CSPKSAc-40 produced an average pore size diameter of 6.0 nm which is in the region of mesopore. All the CSAc-40, PKSAc-40 and mixed CSPKSAc-40 showed similar adsorption trend for iodine number and percentage removal of MB. Interestingly, this finding showed that in the mixed activated carbon some chemical reactions might have occurred during the activation process producing mesoporous instead of microporous as obtained by the single biomass activated carbon.


2014 ◽  
Vol 896 ◽  
pp. 179-182 ◽  
Author(s):  
Erman Taer ◽  
Iwantono ◽  
Saidul Tua Manik ◽  
R. Taslim ◽  
D. Dahlan ◽  
...  

Binderless activated carbon monoliths (ACMs) for supercapacitor electrodes were prepared from sugarcane bagasse by two different methods of physical and combination of physical-chemical activation process. The CO2 gas was used as physical activation agent and 0.3 M KOH was chosen as chemical activation agent. The ACMs were tested as electrodes in two-electrode systems of the coin tape cell supercapacitor that consists of stainless steel as current collectors and 1 M H2SO4 as an electrolyte. The improving of resistive, capacitive and energy properties of combination of physical-chemical ACMs electrodes were shown by an impedance spectroscopy, a cyclic voltammetry and a galvanostatic charge-discharge method. The improving of resistive, capacitive and energy properties as high as 1 to 0.6 Ω, 146 to 178 F g-1, 3.83 to 4.72 W h kg-1, respectively. The X-ray diffraction analysis and field emission scanning electron microscope were performed to characterize the crystallite and morphology characteristics. The results showed that the combination of physical-chemical activation process have given a good improving in performance of the bagasse based ACMs electrodes in supercapacitor application.


Author(s):  
Muhammad S. Muzarpar ◽  
A. M. Leman

Activated carbon (AC) was recognized by many researchers as useful substance in adsorption of impurities. Several processes involved in the production of AC which were carbonization, crushing, and activation process. Carbonization of carbon required high temperature up to 900oC. Then the carbon will be crush to a desired size for activation process. Activation of carbon can be either chemical activation, physical activation or combination of chemical and physical activation which called physiochemical activation. The mechanism adsorption of AC commonly due to its micropore present in the carbon or the weak vander waals forces which can attract the impurities. Activated carbon have multiple function in human daily life. This study will be discuss the function of AC in the production face mask, water filtration and air filtration.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2047 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Paweł Kazimierski ◽  
Maciej Klein ◽  
Dariusz Kardaś ◽  
Justyna Łuczak

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The effect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


Author(s):  
Erman Taer ◽  
Nazilah Nikmatun ◽  
Apriwandi ◽  
Agustino ◽  
Rika Taslim ◽  
...  

Activated carbon powder is a popular material used as an electrode material for large scale applications, especially supercapacitors because of its excellent physical and electrochemical properties. Self-adhesive carbon powder based on coconut coir was prepared via single-step pyrolysis and chemical activation with NaOH solution. A single-step pyrolysis was performed, including carbonization and physical activation in the N2/CO2 atmosphere. The physical temperature of 750 °C, 800 °C, 850 °C and 900 °C is the major focus to evaluate the behavior of self-adhesive activated carbon. The density and the microcrystalline characteristics of the electrodes are influenced by the physical activation temperature. The density feature was evaluated based on the approach of self-adhesive carbon reduction dimensions such as mass, diameter, and thickness. Microcrystalline behavior was performed by using X-ray diffraction method, and it has shown the good amorphous properties of the activated carbon. The self-adhesive activated carbon electrodes were characterized and evaluated in symmetrical supercapacitor cells. The electrochemical characterization of the carbon electrodes using cyclic voltammetry method found that the high specific capacitance of 96 F.g-1 in 1 M H2SO4 electrolyte at a low scan rate of 1 mV.s-1 with energy specific and power specific of 13.33 Wh.kg-1 and 48.03 W.kg-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document