scholarly journals The experimental verification of the multi-fuel IC engine concept with the use of jet propellant-8 (JP-8) and its blends with pure rapeseed oil

Author(s):  
Grzegorz Pawlak ◽  
Patryk Płochocki ◽  
Przemysław Simiński ◽  
Tomasz Skrzek

AbstractThe paper presents some research results to recognize the possibility of realization of the idea of a multi-fuel IC engine. Future construction is planned as a flexible solution for military or special purpose transport means and emergency power generation. The proposed engine would utilize compression ignition mode for combustion of high reactive fuels (JP-8, diesel oil, etc.) or spark ignition mode for gasoline or other low reactive fuels. Practical implementation of the idea requires that highly reactive fuels be burned efficiently at a low compression ratio suitable for both engine modes. For the test diesel oil, JP-8 and its blends with pure rapeseed oil were chosen as easily accessible fuels. The experiment was carried out on naturally aspirated and supercharged AVL research engine with a common rail system and compression ratio CR = 12. The elaborated, unified injection strategy that synchronized the main dose injection timing with the start of the second stage of homogeneous mixture combustion was checked in practice. The proposed injection strategy applied for CI engine with the low compression ratio enabled efficient combustion and comparable, relatively high engine performance for all tested fuels.

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2644 ◽  
Author(s):  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor ◽  
Wan Mohd Faizal Wan Mahmood

Blending diesel with biofuels, such as ethanol and palm oil methyl ester (PME), enhances the fuel properties and produces improved engine performance and low emissions. However, the presence of ethanol, which has a small cetane number and low heating value, reduces the fuel ignitability. This work aimed to study the effect of injection strategies, compression ratio (CR), and air intake temperature (Ti) modification on blend ignitability, combustion characteristics, and emissions. Moreover, the best composition of diesel–ethanol–PME blends and engine modification was selected. A simulation was also conducted using Converge CFD software based on a single-cylinder direct injection compression ignition Yanmar TF90 engine parameter. Diesel–ethanol–PME blends that consist of 10% ethanol with 40% PME (D50E10B40), D50E25B25, and D50E40B10 were selected and conducted on different injection strategies, compression ratios, and intake temperatures. The results show that shortening the injection duration and increasing the injected mass has no significant effect on ignition. Meanwhile, advancing the injection timing improves the ignitability but with weak ignition energy. Therefore, increasing the compression ratio and ambient temperature helps ignite the non-combustible blends due to the high temperature and pressure. This modification allowed the mixture to ignite with a minimum CR of 20 and Ti of 350 K. Thus, blending high ethanol contents in a diesel engine can be applied by advancing the injection, increasing the CR, and increasing the ambient temperature. From the emission comparison, the most suitable mixtures that can be operated in the engine without modification is D50E25B25, and the most appropriate modification on the engine is by increasing the ambient temperature at 350 K.


2018 ◽  
Vol 7 (4) ◽  
pp. 2594
Author(s):  
Razieh Pourdarbani ◽  
Ramin Aminfar

In this research, we tried to investigate all the fuel injection systems of diesel engines in order to select the most suitable fuel injection system for the OM357 diesel engine to achieve the highest efficiency, maximize output torque and reduce emissions and even reduce fuel consumption. The prevailing strategy for this study was to investigate the effect of injection pressure changes, injection timing and multi-stage injection. By comparing the engines equipped with common rail injection system, the proposed injector for engine OM357 is solenoid, due to the cost of this type of injector, MAP and controller (ECU). It is clear that this will not be possible only with the optimization of the injection system, and so other systems that influence engine performance such as the engine's respiratory system and combustion chamber shape, etc. should also be optimized. 


2010 ◽  
Vol 7 (2) ◽  
pp. 399-406 ◽  
Author(s):  
M. Venkatraman ◽  
G. Devaradjane

In the present investigation, tests were carried out to determine engine performance, combustion and emissions of a naturally aspirated direct injection diesel engine fueled with diesel and Jatropha Methyl ester and their blends (JME10, JME20 and JME30). Comparison of performance and emission was done for different values of compression ratio, injection pressure and injection timing to find best possible combination for operating engine with JME. It is found that the combined compression ratio of 19:1, injection pressure of 240 bar and injection timing of 27?bTDC increases the BTHE and reduces BSFC while having lower emissions.From the investigation, it is concluded that the both performance and emissions can considerably improved for Methyl ester of jatropha oil blended fuel JME20 compared to diesel.


2021 ◽  
Vol 25 (1) ◽  
pp. 13-28
Author(s):  
Grzegorz Dzieniszewski ◽  
Maciej Kuboń ◽  
Miroslav Pristavka ◽  
Pavol Findura

Abstract A comparative analysis of performance of Diesel engines fuelled by diesel oil, methyl ester of rapeseed oil and raw rapeseed oil was performed. The analysis of external characteristics of engines powered by various fuel types was accepted for an assessment. Engine performance rates were analysed while attention was paid to power courses, moment, unit fuel consumption and hour fuel consumption, exhaust fumes temperature and exhaust smoke. Operation effectiveness of engines was assessed when they were fed with various fuel types and optimal proportions of fuel mixtures were indicated. Environmental aspects of powering the engines with traditional fuels and crop-based fuels were analysed. The total CO2 emission in the entire process of manufacturing and combustion of fuels was accepted as a criterion. A simplified economic analysis was performed in the aspect of the underlying purpose of using crop-based fuels for propulsion of piston engines. Conclusions and recommendations that indicate directions of development concerning the analysed issue were prepared.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1051
Author(s):  
Jungmo Oh ◽  
Kichol Noh ◽  
Changhee Lee

The Atkinson cycle, where expansion ratio is higher than the compression ratio, is one of the methods used to improve thermal efficiency of engines. Miller improved the Atkinson cycle by controlling the intake- or exhaust-valve closing timing, a technique which is called the Miller cycle. The Otto–Miller cycle can improve thermal efficiency and reduce NOx emission by reducing compression work; however, it must compensate for the compression pressure and maintain the intake air mass through an effective compression ratio or turbocharge. Hence, we performed thermodynamic cycle analysis with changes in the intake-valve closing timing for the Otto–Miller cycle and evaluated the engine performance and Miller timing through the resulting problems and solutions. When only the compression ratio was compensated, the theoretical thermal efficiency of the Otto–Miller cycle improved by approximately 18.8% compared to that of the Otto cycle. In terms of thermal efficiency, it is more advantageous to compensate only the compression ratio; however, when considering the output of the engine, it is advantageous to also compensate the boost pressure to maintain the intake air mass flow rate.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


2017 ◽  
Vol 19 (2) ◽  
pp. 202-213 ◽  
Author(s):  
Michal Pasternak ◽  
Fabian Mauss ◽  
Christian Klauer ◽  
Andrea Matrisciano

A numerical platform is presented for diesel engine performance mapping. The platform employs a zero-dimensional stochastic reactor model for the simulation of engine in-cylinder processes. n-Heptane is used as diesel surrogate for the modeling of fuel oxidation and emission formation. The overall simulation process is carried out in an automated manner using a genetic algorithm. The probability density function formulation of the stochastic reactor model enables an insight into the locality of turbulence–chemistry interactions that characterize the combustion process in diesel engines. The interactions are accounted for by the modeling of representative mixing time. The mixing time is parametrized with known engine operating parameters such as load, speed and fuel injection strategy. The detailed chemistry consideration and mixing time parametrization enable the extrapolation of engine performance parameters beyond the operating points used for model training. The results show that the model responds correctly to the changes of engine control parameters such as fuel injection timing and exhaust gas recirculation rate. It is demonstrated that the method developed can be applied to the prediction of engine load–speed maps for exhaust NOx, indicated mean effective pressure and fuel consumption. The maps can be derived from the limited experimental data available for model calibration. Significant speedup of the simulations process can be achieved using tabulated chemistry. Overall, the method presented can be considered as a bridge between the experimental works and the development of mean value engine models for engine control applications.


2021 ◽  
pp. 146808742110012
Author(s):  
Nicola Giramondi ◽  
Anders Jäger ◽  
Daniel Norling ◽  
Anders Christiansen Erlandsson

Thanks to its properties and production pathways, ethanol represents a valuable alternative to fossil fuels, with potential benefits in terms of CO2, NOx, and soot emission reduction. The resistance to autoignition of ethanol necessitates an ignition trigger in compression-ignition engines for heavy-duty applications, which in the current study is a diesel pilot injection. The simultaneous direct injection of pure ethanol as main fuel and diesel as pilot fuel through separate injectors is experimentally investigated in a heavy-duty single cylinder engine at a low and a high load point. The influence of the nozzle hole number and size of the diesel pilot injector on ethanol combustion and engine performance is evaluated based on an injection timing sweep using three diesel injector configurations. The tested configurations have the same geometric total nozzle area for one, two and four diesel sprays. The relative amount of ethanol injected is swept between 78 – 89% and 91 – 98% on an energy basis at low and high load, respectively. The results show that mixing-controlled combustion of ethanol is achieved with all tested diesel injector configurations and that the maximum combustion efficiency and variability levels are in line with conventional diesel combustion. The one-spray diesel injector is the most robust trigger for ethanol ignition, as it allows to limit combustion variability and to achieve higher combustion efficiencies compared to the other diesel injector configurations. However, the two- and four-spray diesel injectors lead to higher indicated efficiency levels. The observed difference in the ethanol ignition dynamics is evaluated and compared to conventional diesel combustion. The study broadens the knowledge on ethanol mixing-controlled combustion in heavy-duty engines at various operating conditions, providing the insight necessary for the optimization of the ethanol-diesel dual-injection system.


Sign in / Sign up

Export Citation Format

Share Document