scholarly journals Tribological behavior and microstructural evolution of lubricating film of silver matrix self-lubricating nanocomposite

Friction ◽  
2020 ◽  
Author(s):  
Xiao Kang ◽  
Shuang Yu ◽  
Hailin Yang ◽  
Yang Sun ◽  
Lei Zhang

Abstract The aim of this study is to fabricate the nanocomposite with low friction and high wear resistance using binary solid lubricant particles. The microstructure and tribological performance of the nanocomposite are evaluated, and the composition and film thickness of the lubricating film are observed and analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The nanocomposite exhibited improved tribological properties with a friction coefficient as low as 0.12 and a low wear rate of 2.17 × 10−6 mm3/(N·m) in high-purity nitrogen atmosphere. Decreasing sliding speed can increase lubricating film thickness, and the thickest lubricating film is approximately 125 nm. As the film thickness of the lubricating film exceeded 90 nm, the friction coefficient curves became smooth. In compared with WS2, MoS2 can be more effective in forming the transfer layer on the worn surfaces at the initial stage of the tribological process.

2011 ◽  
Vol 189-193 ◽  
pp. 231-235
Author(s):  
Yun Cai Zhao ◽  
Li Wang

The influence of MoS2 lubrication phase on the tribological properties of the Ni60A/MoS2 composite coating was conducted on UMT-2 micro-wear testing machine (USA), discussing the self-lubricating effect and mechanism. The result shows that with the increasing content of MoS2, the friction coefficient of the coating which changed with the increasing content of the MoS2 presents firstly decreases then increases, and the value reach the minimum when the quality percent of MoS2 wrapped with Nickel is 35%. Low-friction property of the Ni60A/MoS2 composite coating is due to the forming of MoS2 lubricating film in friction surface. The decreasing of the friction coefficient of the coating is in proportion to the coverage area of MoS2 lubricating film.


Author(s):  
A. Paradecka ◽  
K. Lukaszkowicz

Purpose: The purpose of this article is to characterize and compare the microstructure and tribological properties of low friction DLC:Ti and MoS2 thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC:Ti and MoS2 thin films deposited by PACVD technology and magnetron sputtering method respectively were used. Observations of topography were made using atomic force microscope (AFM). Adhesion of the coating to the substrate material was verified by the scratch test. The friction coefficient and wear rate of the coating were determined in the ball-on-disc test. Findings: AFM as well as adhesion and friction coefficient tests confirmed low friction nature of MoS2 and DLC:Ti coatings. During the research information on the behaviour of coatings under tribological load was obtained. The investigated coating reveals high wear resistance and good adhesion to the substrate. Practical implications: The area of testing of low-friction thin films is widely studied due to their practical application. Intensive development of new technologies requires the introduction of corresponding layers of both full protective functions and reducing friction. Originality/value: Growing area of low-friction coatings with specific properties requires thorough tribological and topographical research, which is closely related to these properties.


2018 ◽  
Vol 70 (8) ◽  
pp. 1396-1401 ◽  
Author(s):  
Daoyi Wu ◽  
Yufu Xu ◽  
Lulu Yao ◽  
Tao You ◽  
Xianguo Hu

Purpose This paper aims to study the upgradation of the lubricating performance of the renewable base oil , and to study the tribological behavior of graphene oxide (GO) sheets used as lubricating additives in bio-oil for iron/steel contact. Design/methodology/approach A multifunctional end-face tribometer was used to characterize the friction coefficient and wear loss of the tribosystem under different lubricants. Findings The experimental results show that GO sheets with small size benefit lubricating effects and the optimal concentration of GO sheets in bio-oil is 0.4-0.6 per cent, which can form a complete lubricating film on the frictional interfaces and obtain a low friction coefficient and wear loss. Higher concentration of GO sheets can result in a significant aggregation of the sheets, reducing the content of the lubricating components in the bio-oil, which results in the increase in friction and wear; at this stage, the main wear pattern was ascribed to adhesive wear. Practical implications These results show a promising prospect of improving the tribological performance of renewable base oil with the introduction of GO sheets as additives. Originality/value No literature has covered the tribological behaviour of GO sheets in bio-oil. This study contributes to accelerating the application of bio-oil.


2013 ◽  
Vol 334-335 ◽  
pp. 97-104
Author(s):  
Marcin Golabczak ◽  
Philippe Jacquet ◽  
Corinne Nouveau ◽  
Romain Fliti

X38CrMoV5-1 steel is a typical tool steel commonly used in forging and plastic moulding industry for production of ejectors, slides, dies, etc. In plastics moulding a lot of these parts sustain relative movement. Because of this, some seizing or micro-welding may appear, especially when lubrication is not used. For many years, the different types of protective coatings were developed to avoid such problems. Most of the obtained solutions relate to the manufacturing of low friction coatings obtained by different nitriding processes and by CVD or PVD methods. In this article, the friction coefficients and the wear resistances of TiC+a-C:H protective coatings manufactured on X38CrMoV5-1 steel samples by using PVD technology are studied. The investigations are based on tribometer tests in different temperature conditions. The process of deposition of PVD coatings was realized by using multisource, hybrid factory-scale equipment of type URM 079. This equipment allows for deposition of coatings by a physical method. The tribological tests were performed using a precision high temperature tribometer under ambient and high temperature conditions with a steel and corundum balls as a counter-samples. In this paper, the results of these tribological tests are presented. It is shown that the measured friction coefficient of steel samples with PVD coatings is significantly lower than the friction coefficient of uncoated steel. It is also shown that X38CrMoV5-1 steel samples with manufactured TiC+a-C:H coatings are characterized by a very low friction coefficient and high wear resistance.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 719
Author(s):  
Yuki Hirata ◽  
Ryotaro Takeuchi ◽  
Hiroyuki Taniguchi ◽  
Masao Kawagoe ◽  
Yoshinao Iwamoto ◽  
...  

Amorphous boron carbon nitride (a-BCN) films exhibit excellent properties such as high hardness and high wear resistance. However, the correlation between the film structure and its mechanical properties is not fully understood. In this study, a-BCN films were prepared by an arc-sputtering hybrid process under various coating conditions, and the correlations between the film’s structure and mechanical properties were clarified. Glow discharge optical emission spectroscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy were used to analyze the structural properties and chemical composition. Nanoindentation and ball-on-disc tests were performed to evaluate the hardness and to estimate the friction coefficient and wear volume, respectively. The results indicated that the mechanical properties strongly depend on the carbon content in the film; it decreases significantly when the carbon content is <90%. On the other hand, by controlling the contents of boron and nitrogen to a very small amount (up to 2.5 at.%), it is possible to synthesize a film that has nearly the same hardness and friction coefficient as those of an amorphous carbon (a-C) film and better wear resistance than the a-C film.


1993 ◽  
Vol 308 ◽  
Author(s):  
J. Meneve ◽  
R. Jacobs ◽  
F. Lostak ◽  
L. Eersels ◽  
E. Dekempeneer ◽  
...  

ABSTRACTAmorphous hydrogenated silicon carbide (a-Si1-xCx:H) films (x = 0.65 to 1) were deposited by radio frequency plasma assisted chemical vapour deposition (RF-PACVD). Their friction and wear properties were investigated by means of a conventional ball-on-disk apparatus. The results were correlated with film mechanical properties. It was found that adding silicon to a-C:H (also called diamond-like carbon (DLC)) films reduces the hardness, elastic modulus and internal stress values by 15 to 30 %. Scratch testing induces film spallation from stainless steel substrates at low loads (1 N). In the low normal load (1 N) ball-on-disk tests under humid N2 conditions, a-Si1-xCx:H films (0.7 < x < 0.9) combine a very low wear rate of both the film and the counterbody with a steady state low friction coefficient below 0.1. For higher loads (5 and 10 N), however, this low friction coefficient only lasts for a relatively short time. In this case, the harder diamond-like carbon films perform tribologically better because of their higher wear resistance, low wear rate of the counterbody and generally low friction coefficients between 0.15 and 0.35 in a humid ambient atmosphere. In a dry N2 atmosphere, pure DLC films perform tribologically better than a-S1-xCx:H films in all respects.


2007 ◽  
Vol 353-358 ◽  
pp. 852-855 ◽  
Author(s):  
Yan Qiu Xia ◽  
Shinya Sasaki ◽  
Takashi Murakami ◽  
Miki Nakano

The friction and wear properties of phosphor bronze discs sliding against SAE52100 steel balls were evaluated using an Optimol SRV reciprocating friction and wear tester under the lubrication of pure poly-alpha-olefin (PAO) and PAO containing commercial phosphite ester, zinc dialkyldithiophosphate (ZDTP) and oleic acid additives. The morphologies of the worn surfaces of the phosphor bronze discs were observed using a scanning electron microscope (SEM). In addition, the elemental compositions and chemical states of several typical elements on the worn surfaces of the phosphor bronze discs were examined by means of X-ray photoelectron spectroscopy (XPS). The findings indicated that the phosphor bronze discs exhibited higher wear resistance under the lubrication of PAO containing phosphite ester than pure PAO, PAO containing ZDTP, and PAO containing oleic acid. Also, the phosphor bronze discs exhibited stable friction coefficients as low as 0.09-0.11 when lubricated with PAO containing phosphite ester. According to the XPS analyses, it was considered that the formation of CuO and phosphate led to lower friction coefficient and high wear resistance of phosphor bronze specimens lubricated with PAO containing phosphite ester. In the case of the phosphor bronze specimens lubricated with PAO containing ZDTP and oleic acid, the formation of organic compounds seemed to lead to lower friction coefficient, but did not seem to affect the wear resistance.


2010 ◽  
Vol 139-141 ◽  
pp. 274-279
Author(s):  
Yu Zhou Gao ◽  
Jiang Tao Wang ◽  
Shi Yong Liu ◽  
Hui Chen Zhang

Two kinds of ceramic additives have been developed that one is the serpentine particles and another is a blend of serpentine particles and catalyst. The tribological properties of the addition of different additives are investigated through a series of friction and wear experiments. Wear surface and the composition of the tribofilm were examined by SEM, EDS and XPS. In case of single serpentine additive, tribo-film can be formed gradually on the worn metal surface. The friction coefficient is about 0.11. The tribofilm mainly consists of Mg and Si elements transferred from the additive. This can compensates part of wear mass loss, avoids the direct contact of the two rubbing surfaces, and thus effectively improves the anti-wear characteristics. In case of the blend oil additive, the tribo-film formed obviously on the worn surface in the initial stage and no obvious film at end of the test. However, the friction coefficient can lower even to 0.007~0.008 compared with the above experiment. The worn surface becomes very smooth. Chemical analysis shows that there is a very thin film of carbon concentration with thickness of 30~50nm on the worn surface. Existence of the very thin carbon-concentrated film and mirror-like surface generates super low friction coefficient.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ichiro Minami ◽  
Ayumi Sugibuchi

The lubrication mechanism of aluminium alloy slid against steel was investigated from the standpoint of surface chemistry. Low friction and low wear were observed using glycerol mono-olate in a hydrocarbon as lubricant. Increase in the silicon content in the aluminium alloy during rubbing was observed by surface analyses using (1) Auger electron spectroscopy, (2) scanning electron microscopy along with energy dispersive X-ray spectroscopy, and (3) X-ray photoelectron spectroscopy. Mild removal of the passive state (aluminium oxide) from the uppermost surface by the additive during the running-in process was proposed as the lubrication mechanism. The importance of additive chemistry that improves the running-in process was pointed out.


Sign in / Sign up

Export Citation Format

Share Document