scholarly journals Modeling for the study of thermophysical properties of metallic nanoparticles

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ratan Lal Jaiswal ◽  
Brijesh Kumar Pandey

AbstractSuccessful description and explanation of thermophysical properties at the nano level is a task of great challenge even yet today. Although great effort has been made by pioneer workers and scientists in this field but still the exact model for the prediction and explanation of these properties is lagging. In the current work, we have proposed a new model to calculate the thermophysical properties like specific heat, melting enthalpy, and melting entropy of nanomaterials, which are calculated with the help of a cohesive energy model including shape effect in addition to structure of materials at the nano level. The relaxation factor due to the dangling bond at the surface of nanoparticles is taken under consideration. The obtained results using this model is fully consistent with the available experimental findings for the above said thermophysical properties for silver (Ag), copper (Cu), Palladium (Pd), Aluminium (Al), and Indium (In). This encouraging idea has also been used to predict the nature of variation of above mentioned important thermodynamic properties of other materials at their nano level.

2013 ◽  
Vol 22 ◽  
pp. 391-396
Author(s):  
RASNA THAKUR ◽  
RAJESH K. THAKUR ◽  
N. K. GAUR

We have investigated the thermal and allied properties of Tb0.5Sr0.5CoO3 for the temperature range 1K≤T≤300K using the Modified Rigid Ion Model (MRIM). The calculated bulk modulus, specific heat, and other thermodynamic properties obtained from MRIM have presented proper interpretation of the experimental data, for Sr ions doped TbCoO3 . In addition, the results on the cohesive energy (φ), Debye temperature (θD) and Gruneisen parameter (γ) are also discussed.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Manauwar Ali Ansari

AbstractIn this paper, a new theoretical two-phase (solid–liquid) type model of melting temperature has developed based on the modified Gibbs–Thomson equation. Further, it is extended to derive other different size-dependent thermodynamic properties such as cohesive energy, Debye temperature, specific heat capacity, the thermal and electrical conductivity of metallic nanoparticles. Quantitative calculation of the effect of size on thermodynamic properties resulted in, varying linearly with the inverse of characteristic length of nanomaterials. The models are applied to Al, Pb, Ag, Sn, Mo, W, Co, Au and Cu nanoparticles of spherical shape. The melting temperature, Debye temperature, thermal and electrical conductivity are found to decrease with the decrease in particle size, whereas the cohesive energy and specific heat capacity are increased with the decrease in particle size. The present model is also compared with previous models and found consistent. The results obtained with this model validated with experimental and simulation results from several sources that show similar trends between the model and experimental results. Graphic abstract


2015 ◽  
Vol 29 (08) ◽  
pp. 1550025 ◽  
Author(s):  
Jeewan Chandra ◽  
Kuldeep Kholiya

A simple theoretical model has been proposed to study the diameter-dependent properties of metallic nanoparticles, i.e. Ag , Au , Al , Ni , Pb , Cu and Fe . The diameter-dependent thermodynamic properties includes melting temperature, Debye temperature, evaporation temperature, melting enthapy and melting entropy. The model is also extended to study the diameter-dependent elastic properties including bulk modulus, Young's modulus and thermal expansion coefficient. On comparison with available experimental findings and other theoretical approaches, the results obtained with the present formulation depict a close agreement and demonstrate the validity of the method proposed in the present paper.


2019 ◽  
Vol 15 ◽  
Author(s):  
Andaç Batur Çolak ◽  
Oğuzhan Yıldız ◽  
Mustafa Bayrak ◽  
Ali Celen ◽  
Ahmet Selim Dalkılıç ◽  
...  

Background: Researchers working in the field of nanofluid have done many studies on the thermophysical properties of nanofluids. Among these studies, the number of studies on specific heat are rather limited. In the study of the heat transfer performance of nanofluids, it is necessary to increase the number of specific heat studies, whose subject is one of the important thermophysical properties. Objective: The authors aimed to measure the specific heat values of Al2O3/water, Cu/water nanofluids and Al2O3-Cu/water hybrid nanofluids using the DTA method, and compare the results with those frequently used in the literature. In addition, this study focuses on the effect of temperature and volume concentration on specific heat. Method: The two-step method was used in the preparation of nanofluids. The pure water selected as the base fluid was mixed with the Al2O3 and Cu nanoparticles and Arabic Gum as the surfactant, firstly mixed in the magnetic stirrer for half an hour. It was then homogenized for 6 hours in the ultrasonic homogenizer. Results: After the experiments, the specific heat of nanofluids and hybrid nanofluid were compared and the temperature and volume concentration of specific heat were investigated. Then, the experimental results obtained for all three fluids were compared with the two frequently used correlations in the literature. Conclusion: Specific heat capacity increased with increasing temperature, and decreased with increasing volume concentration for three tested nanofluids. Cu/water has the lowest specific heat capacity among all tested fluids. Experimental specific heat capacity measurement results are compared by using the models developed by Pak and Cho and Xuan and Roetzel. According to experimental results, these correlations can predict experimental results within the range of ±1%.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 488
Author(s):  
Oumaima Nasry ◽  
Abderrahim Samaouali ◽  
Sara Belarouf ◽  
Abdelkrim Moufakkir ◽  
Hanane Sghiouri El Idrissi ◽  
...  

This study aims to provide a thermophysical characterization of a new economical and green mortar. This material is characterized by partially replacing the cement with recycled soda lime glass. The cement was partially substituted (10, 20, 30, 40, 50 and 60% in weight) by glass powder with a water/cement ratio of 0.4. The glass powder and four of the seven samples were analyzed using a scanning electron microscope (SEM). The thermophysical properties, such as thermal conductivity and volumetric specific heat, were experimentally measured in both dry and wet (water saturated) states. These properties were determined as a function of the glass powder percentage by using a CT-Meter at different temperatures (20 °C, 30 °C, 40 °C and 50 °C) in a temperature-controlled box. The results show that the thermophysical parameters decreased linearly when 60% glass powder was added to cement mortar: 37% for thermal conductivity, 18% for volumetric specific heat and 22% for thermal diffusivity. The density of the mortar also decreased by about 11% in dry state and 5% in wet state. The use of waste glass powder as a cement replacement affects the thermophysical properties of cement mortar due to its porosity as compared with the control mortar. The results indicate that thermal conductivity and volumetric specific heat increases with temperature increase and/or the substitution rate decrease. Therefore, the addition of waste glass powder can significantly affect the thermophysical properties of ordinary cement mortar.


1964 ◽  
Vol 86 (3) ◽  
pp. 320-326 ◽  
Author(s):  
E. S. Nowak

A parametric equation of state was derived for water and water vapor in the critical region from experimental P-V-T data. It is valid in that part of the critical region encompassed by pressures from 3000 to 4000 psia, specific volumes from 0.0400 to 0.1100 ft3/lb, and temperatures from 698 to 752 deg F. The equation of state satisfies all of the known conditions at the critical point. It also satisfies the conditions along certain of the boundaries which probably separate “supercritical liquid” from “supercritical vapor.” The equation of state, though quite simple in form, is probably superior to any equation heretofore derived for water and water vapor in the critical region. Specifically, the deviations between the measured and computed values of pressure in the large majority of the cases were within three parts in one thousand. This coincides approximately with the overall uncertainty in P-V-T measurements. In view of these factors, the author recommends that the equation be used to derive values for such thermodynamic properties as specific heat at constant pressure, enthalpy, and entropy in the critical region.


1998 ◽  
Vol 12 (02) ◽  
pp. 191-205 ◽  
Author(s):  
Vu Van Hung ◽  
Nguyen Thanh Hai

By the moment method established previously on the basis of the statistical mechanics, the thermodynamic properties of a strongly anharmonic face-centered and body-centered cubic crystal with point defect are considered. The thermal expansion coefficient, the specific heat Cv and Cp, the isothermal and adiabatic compressibility, etc. are calculated. Our calculated results of the thermal expansion coefficient, the specific heat Cv and Cp… of W, Nb, Au and Ag metals at various temperatures agrees well with the measured values. The anharmonic effects in extended X-ray absorption fine structure (EXAFS) in the single-shell model are considered. We have obtained a new formula for anharmonic contribution to the mean square relative displacement. The anharmonicity is proportional to the temperature and enters the phase change of EXAFS. Our calculated results of Debye–Waller factor and phase change in EXAFS of Cu at various temperatures agrees well with the measured values.


Solar Energy ◽  
2014 ◽  
Vol 105 ◽  
pp. 468-478 ◽  
Author(s):  
Dileep Singh ◽  
Elena V. Timofeeva ◽  
Michael R. Moravek ◽  
Sreeram Cingarapu ◽  
Wenhua Yu ◽  
...  

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Omid Askari

Chemical composition and thermodynamics properties of different thermal plasmas are calculated in a wide range of temperatures (300–100,000 K) and pressures (10−6–100 atm). The calculation is performed in dissociation and ionization temperature ranges using statistical thermodynamic modeling. The thermodynamic properties considered in this study are enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The calculations have been done for seven pure plasmas such as hydrogen, helium, carbon, nitrogen, oxygen, neon, and argon. In this study, the Debye–Huckel cutoff criterion in conjunction with the Griem’s self-consistent model is applied for terminating the electronic partition function series and to calculate the reduction of the ionization potential. The Rydberg and Ritz extrapolation laws have been used for energy levels which are not observed in tabulated data. Two different methods called complete chemical equilibrium and progressive methods are presented to find the composition of available species. The calculated pure plasma properties are then presented as functions of temperature and pressure, in terms of a new set of thermodynamically self-consistent correlations for efficient use in computational fluid dynamic (CFD) simulations. The results have been shown excellent agreement with literature. The results from pure plasmas as a reliable reference source in conjunction with an alternative method are then used to calculate the thermodynamic properties of any arbitrary plasma mixtures (mixed plasmas) having elemental atoms of H, He, C, N, O, Ne, and Ar in their chemical structure.


Sign in / Sign up

Export Citation Format

Share Document