Temperature and potential temperature beneath island arcs

1970 ◽  
Vol 10 (1-3) ◽  
pp. 357-366 ◽  
Author(s):  
D.P. McKenzie
2020 ◽  
Vol 16 ◽  
Author(s):  
Yu-Wei Cui ◽  
Liang-Yu Chen ◽  
Xin-Xin Liu

Abstract:: Thanks to their excellent corrosion resistance, superior mechanical properties and good biocompatibility, titanium (Ti) and Ti alloys are extensively applied in biomedical fields. Pitting corrosion is a critical consideration for the reliability of Ti and Ti alloys used in the human body. Therefore, this article focuses on the pitting corrosion of Ti and Ti alloys, which introduces the growth stages of pitting corrosion and its main influencing factors. Three stages, i.e. (1) breakdown of passive film, (1) metastable pitting, and (3) propagation of pitting, are roughly divided to introduce the pitting corrosion. As reviewed, corrosive environment, applied potential, temperature and alloy compositions are the main factors affecting the pitting corrosion of Ti and Ti alloys. Moreover, the pitting corrosion of different types Ti alloys are also reviewed to correlate the types of Ti alloys and the main factors of pitting corrosion. Roughly speaking, β-type Ti alloys have the best pitting corrosion resistance among the three types of Ti alloys.


Author(s):  
Vladimir Zeitlin

It is shown how the standard RSW can be ’augmented’ to include phase transitions of water. This chapter explains how to incorporate extra (convective) vertical fluxes in the model. By using Lagrangian conservation of equivalent potential temperature condensation of the water vapour, which is otherwise a passive tracer, is included in the model and linked to convective fluxes. Simple relaxational parameterisation of condensation permits the closure of the system, and surface evaporation can be easily included. Physical and mathematical properties of thus obtained model are explained, and illustrated on the example of wave scattering on the moisture front. The model is applied to ’moist’ baroclinic instability of jets and vortices. Condensation is shown to produce a transient increase of the growth rate. Special attention is paid to the moist instabilities of hurricane-like vortices, which are shown to enhance intensification of the hurricane, increase gravity wave emission, and generate convection-coupled waves.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Lu ◽  
Ritske S. Huismans

AbstractBreakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50–80 °C, significantly smaller than previously suggested.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jens Ziegle ◽  
Alfredo Illanes ◽  
Axel Boese ◽  
Michael Friebe

AbstractDuring thermal ablation in a target tissue the information about temperature is crucial for decision making of successful therapy. An observable temporal and spatial temperature propagation would give a visual feedback of irreversible cell damage of the target tissue. Potential temperature features in ultrasound (US) B-Mode image sequences during radiofrequency (RF) ablation in ex-vivo porcine liver were found and analysed. These features could help to detect the transition between reversible and irreversible damage of the ablated target tissue. Experimental RF ablations of ex-vivo porcine liver were imaged with US B-Mode imaging and image sequences were recorded. Temperature was simultaneously measured within the liver tissue around a bipolar RF needle electrode. In the B-Mode images, regions of interest (ROIs) around the centre of the measurement spots were analysed in post-processing using average gray-level (AVGL) compared against temperature. The pole of maximum energy level in the time-frequency domain of the AVGL changes was investigated in relation to the measured temperatures. Frequency shifts of the pole were observed which could be related to transitions between the states of tissue damage.


2021 ◽  
Author(s):  
Antoine Hochet ◽  
Rémi Tailleux ◽  
Till Kuhlbrodt ◽  
David Ferreira

AbstractThe representation of ocean heat uptake in Simple Climate Models used for policy advice on climate change mitigation strategies is often based on variants of the one-dimensional Vertical Advection/Diffusion equation (VAD) for some averaged form of potential temperature. In such models, the effective advection and turbulent diffusion are usually tuned to emulate the behaviour of a given target climate model. However, because the statistical nature of such a “behavioural” calibration usually obscures the exact dependence of the effective diffusion and advection on the actual physical processes responsible for ocean heat uptake, it is difficult to understand its limitations and how to go about improving VADs. This paper proposes a physical calibration of the VAD that aims to provide explicit traceability of effective diffusion and advection to the processes responsible for ocean heat uptake. This construction relies on the coarse-graining of the full three-dimensional advection diffusion for potential temperature using potential temperature coordinates. The main advantage of this formulation is that the temporal evolution of the reference temperature profile is entirely due to the competition between effective diffusivity that is always positive definite, and the water mass transformation taking place at the surface, as in classical water mass analyses literature. These quantities are evaluated in numerical simulations of present day climate and global warming experiments. In this framework, the heat uptake in the global warming experiment is attributed to the increase of surface heat flux at low latitudes, its decrease at high latitudes and to the redistribution of heat toward cold temperatures made by diffusive flux.


2003 ◽  
Vol 36 (1) ◽  
pp. 141-145 ◽  
Author(s):  
L. J. Farrugia ◽  
P. Macchi ◽  
A. Sironi

The coordination complex [Ni(en)3]2+(NO{}_{3}^{- })2(en = 1,2-diaminoethane) undergoes a sharp reversible displacive phase transition at ∼109 K, changing space group fromP6322 above the transition temperature toP6522 below. The phase change is accompanied by a tripling of thecaxis on cooling, resulting in an easy detection of the transition in images from area-detector diffractometers. The transition has been followed using a Nonius KappaCCD and a Bruker SMART APEX CCD. Data sets were collected over the temperature range 100–113 K and integrated using the low-temperature orientation matrix. Reflections withl≠ 3nshow a smooth and rapid decrease in intensity to zero on warming from 106.5 to 111 K. The results are reproducible to within ±2 K in two laboratories and suggest that this compound may be useful as a liquid-nitrogen cryo-calibrant for diffraction instruments equipped with area detectors.


Lithos ◽  
1993 ◽  
Vol 30 (3-4) ◽  
pp. 291-307 ◽  
Author(s):  
E.G. Nisbet ◽  
M.J. Cheadle ◽  
N.T. Arndt ◽  
M.J. Bickle

1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


Sign in / Sign up

Export Citation Format

Share Document