Effects of an intermediate heat treatment during a cold rolling on the tensile strength of a 9Cr–2W steel

2009 ◽  
Vol 36 (8) ◽  
pp. 1103-1107 ◽  
Author(s):  
Tae Kyu Kim ◽  
Sung Ho Kim ◽  
Chan Bock Lee
2010 ◽  
Vol 654-656 ◽  
pp. 78-81 ◽  
Author(s):  
Seung Hyun Lee ◽  
Hu Chul Lee

The drawability of ferrite-austenite dual phase wires decreased with increasing volume fraction and decreasing mechanical stability of austenite. The interface of the martensite and ferrite was identified as the void nucleation site and the number density of voids increased with increasing austenite volume fraction. The plastic incompatibility at the interface was assumed to be the main reason for void nucleation. The ferrite-austenite dual phase steels could be drawn to a maximum true strain of 8.0 without intermediate heat treatment. The tensile strength of the drawn wires increased with increasing volume fraction of austenite or, in other words, with increasing volume fraction of transformed martensite.


2014 ◽  
Vol 936 ◽  
pp. 1796-1800
Author(s):  
Peng Dang ◽  
Xiao Wei Zhang ◽  
Yun Wang ◽  
Qing Zhang ◽  
Chang Liang Li

The influence of annealing temperature on the microstructure, mechanical properties and corrosion resistant of cold rolling zirconium sheet were studied in the manuscript. The experimental results shown that the tensile strength and yield strength of zirconium sheet were decreased and the elongationwas raised with the raising of annealing temperature from 500 °C to 580 °C. The recrystallization are not happened in zirconium sheet at the annealing temperature of 500 °C. Zirconium sheet complete recrystallized and the strength and elongation get a well match at the annealing temperature of 540°C. Zirconium sheet also complete recrystallized at the annealing temperature of 580°C but the crystalline grain has the tendency of growing. The annealing temperature has no effect on the corrosion resistant of zirconium sheet.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Alloy Digest ◽  
1990 ◽  
Vol 39 (12) ◽  

Abstract VASCOMAX T-300 is an 18% nickel maraging steel in which titanium is the primary strengthening agent. It develops a tensile strength of about 300,000 psi with simple heat treatment. The alloy is produced by Vacuum Induction Melting/Vacuum Arc Remelting. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-454. Producer or source: Teledyne Vasco.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


2021 ◽  
Vol 804 ◽  
pp. 140760
Author(s):  
Hamidreza Koohdar ◽  
Pouya Hakimipour ◽  
Hamid Reza Jafarian ◽  
Terence G. Langdon ◽  
Mahmoud Nili-Ahmadabadi

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 819
Author(s):  
Changsheng Li ◽  
Kun Li ◽  
Jingbo Dong ◽  
Jinyi Ren ◽  
Yanlei Song

The effect of aging on the precipitates, mechanical and magnetic properties of Fe-21Cr-15Ni-6Mn-Nb low magnetic stainless steel were investigated. The steel was aged at 550–750 °C for 2 h after solution heat treatment at 1100 °C for 1 h. During the aging treatment, the (Nb, V)(C, N) particles gradually precipitated in the grain, which were coherent or semi-coherent with the matrix. When the aging temperature was beyond 650 °C, the coarsening rate of (Nb, V)(C, N) particles increase rapidly and the coherent orientation between (Nb, V)(C, N) particles and the matrix was lost gradually. Meanwhile, coarse M23C6 was distributed at the grain boundary with chain shape, which was non-coherent with the matrix. The coarsening behavior of (Nb, V)(C, N) precipitates in the grain was analyzed, and the size of the particles precipitated after aging treatment at 650°C for different time was calculated and studied. After aging treatment at 650 °C for 2 h, the yield strength and tensile strength of the stainless steel was 705.6 MPa and 1002.3 MPa, the elongation and the relative magnetic permeability was 37.8% and 1.0035, respectively.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document