scholarly journals Estimation of the novel antipyretic, anti-inflammatory, antinociceptive and antihyperlipidemic effects of silymarin in Albino rats and mice

2015 ◽  
Vol 5 (8) ◽  
pp. 619-623 ◽  
Author(s):  
Mohamed Mahmoud Amin ◽  
Mahmoud Soliman Arbid
2020 ◽  
pp. 096032712094577
Author(s):  
MS Refat ◽  
RZ Hamza ◽  
AMA Adam ◽  
HA Saad ◽  
AA Gobouri ◽  
...  

To assess the chondroprotective effect and influence of N, N′-bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-oxopyrazol-4-yl) sebacamide (dpdo) that was synthesized through the reaction of phenazone with sebacoyl chloride and screened for its biological activity especially as anti-arthritic and anti-inflammatory agent in a monoiodoacetate (MA)-induced experimental osteoarthritis (OA) model. Thirty male albino rats weighing “190–200 g” were divided randomly into three groups (10 each): control, MA-induced OA, and MA-induced OA + dpdo. In MA-induced OA rat, the tumor necrosis factor alpha, interleukin 6, C-reactive protein, rheumatoid factors, reactive oxygen species, as well as all the mitochondrial markers such as mitochondria membrane potential, swelling mitochondria, cytochrome c oxidase (complex IV), and serum oxidative/antioxidant status (malondialdehyde level and activities of myeloperoxidase and xanthine oxidase) are elevated. Also, the activity of succinate dehydrogenase (complex II), levels of ATP, the level of glutathione (GSH), and thiol were markedly diminished in the MA-induced OA group compared to the normal control rats. These findings showed that mitochondrial function is associated with OA pathophysiological alterations and high gene expressions of (IL-6, TNF-a, and IL-1b) and suggests a promising use of dpdo as potential ameliorative agents in the animal model of OA and could act as anti-inflammatory agent in case of severe infection with COVID-19. It is clearly appeared in improving the bone cortex and bone marrow in the treated group with the novel compound in histological and transmission electron microscopic sections which is a very important issue today in fighting severe infections that have significant effects on the blood indices and declining of blood corpuscles like COVID-19, in addition to declining the genotoxicity and inflammation induced by MA in male rats. The novel synthesized compound was highly effective in improving all the above mentioned parameters.


2012 ◽  
Vol 31 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Khaled M. M. Koriem ◽  
Gihan F. Asaad ◽  
Hoda A. Megahed ◽  
Hanan Zahran ◽  
Mahmoud S. Arbid

Pharmacological and biochemical studies on the Ammi majus seeds L. (family Umbelliferae) grown in Egypt are limited. Furocoumarins are the major constituents in the plant seeds. In the present study, the evaluation of the antihyperlipidemic, anti-inflammatory, analgesic, and antipyretic activities on albino rats and mice was done. After 2 months of administration, both the doses (50 and 100 mg/kg body weight [bwt], respectively) of the alcoholic extract of the A. majus seed result in a significant decrease in the concentrations of cholesterol, triglycerides, and low-density lipoprotein and increase in the concentration of high-density lipoprotein. The extract was found to inhibit the rat paw edema at both the doses, which means that it exerts a significant anti-inflammatory activity compared with control-untreated groups at the intervals of 30 and 60 minutes posttreatment. The antipyretic effect of the extract was quite obvious; it showed that 100 mg/kg bwt was more potent in lowering body temperature starting after 1 hour of treatment than the lower dose (50 mg/kg bwt). It is worth to mention that the A. majus extract with its coumarin contents as well as the tested biological activities of the plant was investigated for the first time in the current study. In conclusion, ethanolic extract of the A. majus seeds had antihyperlipidemic, anti-inflammatory, analgesic, and antipyretic activities that are dose dependant.


2020 ◽  
Vol 16 (8) ◽  
pp. 1161-1165
Author(s):  
Bashetti Nagaraju ◽  
Jagarlapudi V. Shanmukhakumar ◽  
Nareshvarma Seelam ◽  
Tondepu Subbaiah ◽  
Bethanamudi Prasanna

Background: Recently, there has been a lot of scientific interest in exploring the syntheses of oxygen and nitrogen-containing heterocyclic compounds due to their pharmacological activities. In addition, benzisoxazoles play a very important role in organic synthesis as key intermediates. Objective: In this paper, we focused on developing a novel synthetic route for biologically active arylisoxazoles under normal conditions, and simplified it to get high purities and yields, and also reported their anti-inflammatory activities. Method: An efficient and simple method has been explored for the synthesis of novel 3-methyl arylisoxazoles from o-nitroaryl halides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via Domino rearrangement in one pot synthesis. Result: We synthesized novel 3-methylarylisoxazoles from o-nitroarylhalides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via domino rearrangement. In this reduction, nitro group and ethoxy vinyl group change to the functional acyl ketones, followed by hetero cyclization. Here, the reaction proceeds without the isolation of intermediates like 2-acylnitroarenes and 2- acylanilines. All the synthesized compounds were completely characterized by the NMR and mass spectra. The compounds were also explored for their anti-inflammatory activity by carrageenan-induced inflammation in the albino rats (150-200 g) of either sex used in this entire study with the use of Diclofenac sodium as the standard drug. The initial evaluations identified leading targets with good to moderate anti-inflammatory activity. Conclusion: A simple, one-pot and convenient method has been explored for the synthesis of novel 3- methylarylisoxazoles with high purity and reaction yields. All the compounds 3a, 3c, 3d, 3f, 3g and 3h exhibited 51-64% anti-inflammatory activities.


Author(s):  
Anne A. Adeyanju ◽  
Folake O. Asejeje ◽  
Olorunfemi R. Molehin ◽  
Olatunde Owoeye ◽  
Esther O. Olatoye ◽  
...  

Abstract Objectives Protocatechuic acid (PCA) possesses numerous pharmacological activities, including antioxidative and anti-inflammatory activities. This study seeks to investigate its underlying mechanism of action in the liver and brain toxicity induced by CCl4 in male albino rats. Methods Rats were given PCA at 10 and 20 mg/kg daily and orally as a pretreatment for seven days. A single injection of CCl4 was given 2 h later to induce brain and liver toxicity. Results CCl4 moderately elevated the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). PCA lowered AST level significantly when compared to control. Total protein and albumin levels presented insignificant changes (p>0.05) in all groups while lipid profile showed increased total cholesterol level and reduced high-density lipoprotein (HDL) by CCl4. PCA (10 mg/kg) significantly reduced the cholesterol level while the 20 mg/kg dose moderately prevented HDL reduction. There was an increased MDA production with a corresponding low GSH level in the group treated with CCl4. Activities of superoxide dismutase, catalase, and glutathione-S-transferase in both organs also declined. PCA, especially at 10 mg/kg attenuated lipid peroxidation by increasing GSH level in the organs. Biochemical assays revealed the improvement of antioxidant enzyme activities by PCA in these organs. Furthermore, PCA lowered the level of proinflammatory cytokine COX 2 in the brain and liver while NF-kB expression was inhibited in the brain. Histopathology reports validated the effects of PCA. Conclusions PCA exhibited protection against toxicity in these tissues through antioxidant and anti-inflammatory activities and the potential mechanism might be through modulation of the NF-κB/COX-2 pathway.


2021 ◽  
Vol 16 ◽  
Author(s):  
Doaa M. Abdullah ◽  
Soad L. Kabil

Background: Gout is a metabolic disease strictly related to hyperuricemia. The associated intense inflammation and pain are triggered by the deposited monosodium urate crystals (MSU) in joints. The principal therapeutic strategies of gout involve the control of hyperuricemia and anti-inflammatory medications. Objectives: This study aimed to investigate the possible beneficial effects of ozone therapy, a well-known antioxidant, and an immunomodulation, on gouty arthritis and the underlying mechanisms. Methods : Acute gouty arthritis was induced in male albino rats via MSU crystals intra-articular injection in the ankle joint. The gouty arthritic rats received pre-treatment with ozone, colchicine (as a reference drug), or combination. Results : The obtained results of ozone therapy showed obvious reduction in the degree of ankle edematous swelling, pro-inflammatory cytokines, lipid peroxidation, the nucleotide binding oligomerization domain like receptor containing pyrin domain 3 (NLRP3), procaspase-1, caspase-1, interleukin-1β synovial tissue levels with enhancement of antioxidant defense system. Additionally, ozone therapy significantly attenuated the histological derangements in gouty arthritic rats. Conclusion : This study suggests that ozone is able to treat gouty arthritis and reducing synovial injury through an anti-inflammatory effect as well as antioxidant activity.


2020 ◽  
Vol 13 (6) ◽  
pp. 449-454
Author(s):  
Rekia Sidhoum ◽  
Mostapha Bachir bey ◽  
Latifa Halli ◽  
Othmane Yalaoui ◽  
Asma Belkadi

2011 ◽  
Vol 108 (6) ◽  
pp. 974-983 ◽  
Author(s):  
Siddhartha S. Saha ◽  
Mahua Ghosh

The present study was undertaken to evaluate the effect of α-eleostearic acid and punicic acid, two isomers of conjugated linolenic acid (CLnA) present in bitter gourd (Momordica charantia) and snake gourd oil (Trichosanthes anguina), respectively, against oxidative stress, inflammatory challenge and aberration in erythrocyte morphology due to streptozotocin (STZ)-induced diabetes. Male albino rats were divided into four groups consisting of eight animals in each group. The first group served as control and diabetes was induced in rats in groups 2–4 by a single intraperitoneal injection of STZ. Moreover, rats in groups 3 and 4 were treated with 0·5 % of α-eleostearic acid and 0·5 % of punicic acid of the total lipid given, respectively, by oral administration once per d. After administration, CLnA isomers had significantly reduced oxidative stress, lipid peroxidation and restored antioxidant and pro-inflammatory enzymes such as superoxide dismutase, catalase, and glutathione peroxidase, reduced glutathione, NO synthase level in pancreas, blood and erythrocyte lysate. The ferric reducing antioxidant power (FRAP) assay of plasma showed that CLnA treatment caused improvement in the FRAP value which was altered after STZ treatment due to an increased level of free radicals. Expression of inflammatory cytokines such as TNF-α and IL-6 in blood and expression of hepatic NF-κB (p65) increased significantly after STZ treatment due to increased inflammation which was restored with the administration of CLnA isomers. From the obtained results, it could be concluded that α-eleostearic acid and punicic acid showed potent antioxidant and anti-inflammatory activity with varying effectivity.


2019 ◽  
Vol 10 (03) ◽  
pp. 259-271
Author(s):  
Loyce Nakalembe ◽  
Josephine N. Kasolo ◽  
Edward Nyatia ◽  
Aloysius Lubega ◽  
Godfrey S. Bbosa

2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Zhao ◽  
Yihang Li ◽  
Dahong Yao ◽  
Ran Sun ◽  
Shifang Liu ◽  
...  

Background: The prevalence of hyperuricemia is considered high worldwide. Hyperuricemia occurs due to decreased excretion of uric acid, increased synthesis of uric acid, or a combination of both mechanisms. There is growing evidence that hyperuricemia is associated with a decline of renal function.Purpose: This study is aimed at investigating the effects of the novel compound on lowering the serum uric acid level and alleviating renal inflammation induced by high uric acid in hyperuricemic mice.Methods: Hyperuricemic mice model was induced by potassium oxonate and used to evaluate the effects of the novel compound named FxUD. Enzyme-linked immunosorbent assay was used to detect the related biochemical markers. Hematoxylin-eosin (HE) staining was applied to observe pathological changes. The mRNA expression levels were tested by qRT-PCR. The protein levels were determined by Western blot. In parallel, human proximal renal tubular epithelial cells (HK-2) derived from normal kidney was used to further validate the anti-inflammatory effects in vitro.Results: FxUD administration significantly decreased serum uric acid levels, restored the kidney function parameters, and improved the renal pathological injury. Meanwhile, treatment with FxUD effectively inhibited serum and liver xanthine oxidase (XOD) levels. Reversed expression alterations of renal inflammatory cytokines, urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) were observed in hyperuricemic mice. Western blot results illustrated FxUD down-regulated protein levels of inflammasome components. Further studies showed that FxUD inhibited the activation of NF-κB signaling pathway in the kidney of hyperuricemic mice. In parallel, the anti-inflammatory effect of FxUD was also confirmed in HK-2.Conclusion: Our study reveals that FxUD exhibits the anti-hyperuricemic and anti-inflammatory effects through regulating hepatic XOD and renal urate reabsorption transporters, and suppressing NF-κB/NLRP3 pathway in hyperuricemia. The results provide the evidence that FxUD may be potential for the treatment of hyperuricemia with kidney inflammation.


Sign in / Sign up

Export Citation Format

Share Document