Relationship between ultraviolet-visible spectra and soluble species in the liquid phase of wastewater sludge during biological digestion under mesophilic and thermophilic conditions

2021 ◽  
pp. 108318
Author(s):  
Eskandar Poorasgari ◽  
Banu Örmeci
2019 ◽  
Vol 5 (12) ◽  
pp. 2182-2192
Author(s):  
Yousif Hirmiz ◽  
Youngseck Hong ◽  
Younggy Kim

Hydrolysis is one of the rate-limiting reactions in the anaerobic digestion (AD) of wastewater sludge; thus, reliable kinetic models for hydrolysis reactions are essential in numerical simulations of AD.


Author(s):  
Huafeng Li ◽  
Jing Li ◽  
Yanan Bao ◽  
Jianliang Li ◽  
Chengyu He ◽  
...  

AbstractAll-inorganic halide perovskite nanowires (NWs) are promising materials due to they have broad application prospects in the field of optoelectronics, with mixed-halide perovskite nanowires can change the optoelectronic properties by adjusting the halide ratio. Here, we experimentally investigated the two-process governed anion-exchange reaction in single-crystalline CsPbX3 micro- and nanowires. The critical parameters affecting the outcome of the reaction are identified as the reaction temperature, reaction time, and precursor concentrations. Upon examining the photoluminescence and morphology of the NWs, high-quality NWs were obtained by optimizing these critical parameters. The bandgap of the NWs can be tuned over the entire visible spectra (430–700 nm). In addition, photodetectors incorporating single NWs were fabricated, which demonstrated excellent responsivity under illumination. Our results expand the validity of liquid-phase anion exchange to the microscale, and lay the basis for liquid-processed optoelectronics and displays.


Author(s):  
Y. Litti ◽  
D. Kovalev ◽  
A. Kovalev ◽  
I. Katraeva ◽  
E. Mikheeva ◽  
...  

Повышение эффективности анаэробного сбраживания осадков сточных вод, включая увеличение выхода метана и глубины минерализации органического вещества, является актуальной задачей. В ходе проведенных исследований изучалось влияние предварительной обработки осадков сточных вод в аппарате вихревого слоя ферромагнитных частиц на эффективность и кинетические параметры последующего анаэробного сбраживания осадка в термофильных условиях. Проведен анализ гранулометрического состава осадков сточных вод до и после обработки в аппарате вихревого слоя. Технологические параметры обработки осадков в аппарате вихревого слоя обусловили увеличение выхода метана на 3, степени разложения органического вещества на 8 9 и константы гидролиза на 4,7. Для оценки кинетических параметров процесса были использованы модифицированное уравнение Гомперца и уравнение первого порядка.Improving the efficiency of anaerobic digestion of wastewater sludge including methane yield and the depth of mineralization of organic matter increasing is an urgent task. As part of the study the effect of wastewater sludge pretreatment in an apparatus with vortex layer of ferromagnetic particles on the efficiency and kinetic parameters of the subsequent anaerobic digestion of the sludge under thermophilic conditions was investigated. The analysis of the particle size distribution of wastewater sludge before and after treatment in the vortex layer apparatus was carried out. The technological parameters of sludge processing in the vortex layer apparatus provided for increasing methane yield by 3, degree of decomposition of organic matter by 8 9, and hydrolysis constants by 4.7. To estimate the kinetic parameters of the process the modified Gompertz equation and the firstorder equation were used.


Author(s):  
N.V. Belov ◽  
U.I. Papiashwili ◽  
B.E. Yudovich

It has been almost universally adopted that dissolution of solids proceeds with development of uniform, continuous frontiers of reaction.However this point of view is doubtful / 1 /. E.g. we have proved the active role of the block (grain) boundaries in the main phases of cement, these boundaries being the areas of hydrate phases' nucleation / 2 /. It has brought to the supposition that the dissolution frontier of cement particles in water is discrete. It seems also probable that the dissolution proceeds through the channels, which serve both for the liquid phase movement and for the drainage of the incongruant solution products. These channels can be appeared along the block boundaries.In order to demonsrate it, we have offered the method of phase-contrast impregnation of the hardened cement paste with the solution of methyl metacrylahe and benzoyl peroxide. The viscosity of this solution is equal to that of water.


Author(s):  
C.D. Humphrey ◽  
T.L. Cromeans ◽  
E.H. Cook ◽  
D.W. Bradley

There is a variety of methods available for the rapid detection and identification of viruses by electron microscopy as described in several reviews. The predominant techniques are classified as direct electron microscopy (DEM), immune electron microscopy (IEM), liquid phase immune electron microscopy (LPIEM) and solid phase immune electron microscopy (SPIEM). Each technique has inherent strengths and weaknesses. However, in recent years, the most progress for identifying viruses has been realized by the utilization of SPIEM.


Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.


Author(s):  
J. Drennan ◽  
R.H.J. Hannink ◽  
D.R. Clarke ◽  
T.M. Shaw

Magnesia partially stabilised zirconia (Mg-PSZ) ceramics are renowned for their excellent nechanical properties. These are effected by processing conditions and purity of starting materials. It has been previously shown that small additions of strontia (SrO) have the effect of removing the major contaminant, silica (SiO2).The mechanism by which this occurs is not fully understood but the strontia appears to form a very mobile liquid phase at the grain boundaries. As the sintering reaches the final stages the liquid phase is expelled to the surface of the ceramic. A series of experiments, to examine the behaviour of the liquid grain boundary phase, were designed to produce compositional gradients across the ceramic bodies. To achieve this, changes in both silica content and furnace atmosphere were implemented. Analytical electron microscope techniques were used to monitor the form and composition of the phases developed. This paper describes the results of our investigation and the presentation will discuss the work with reference to liquid phase sintering of ceramics in general.


Author(s):  
Mahesh Chandramouli

Magnetization reversal in sintered Fe-Nd-B, a complex, multiphase material, occurs by nucleation and growth of reverse domains making the isolation of the ferromagnetic Fe14Nd2B grains by other nonmagnetic phases crucial. The magnets used in this study were slightly rich in Nd (in comparison to Fe14Nd2B) to promote the formation of Nd-oxides at multigrain junctions and incorporated Dy80Al20 as a liquid phase sintering addition. Dy has been shown to increase the domain wall energy thus making nucleation more difficult while Al is thought to improve the wettability of the Nd-oxide phases.Bulk polished samples were examined in a JEOL 35CF scanning electron microscope (SEM) operated at 30keV equipped with a Be window energy dispersive spectrometer (EDS) detector in order to determine the phase distribution.


Author(s):  
N.A. Bert ◽  
A.O. Kosogov

The very thin (<100 Å) InGaAsP layers were grown not only by molecular beam epitaxy and metal-organic chemical vapor deposition but recently also by simple liquid phase epitaxy (LPE) technique. Characterization of their thickness, interfase abruptness and lattice defects is important and requires TEM methods to be used.The samples were InGaAsP/InGaP double heterostructures grown on (111)A GaAs substrate. The exact growth conditions are described in Ref.1. The salient points are that the quarternary layers were being grown at 750°C during a fast movement of substrate and a convection caused in the melt by that movement was eliminated. TEM cross-section specimens were prepared by means of conventional procedure. The studies were conducted in EM 420T and JEM 4000EX instruments.The (200) dark-field cross-sectional imaging is the most appropriate TEM technique to distinguish between individual layers in 111-v semiconductor heterostructures.


Sign in / Sign up

Export Citation Format

Share Document