Non-muscle myosin II isoforms orchestrate substrate stiffness sensing to promote cancer cell contractility and migration

2021 ◽  
Author(s):  
Yueting Peng ◽  
Zhongyuan Chen ◽  
Yuchen He ◽  
Ping Li ◽  
Yu Chen ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Damien Garbett ◽  
Anjali Bisaria ◽  
Changsong Yang ◽  
Dannielle G. McCarthy ◽  
Arnold Hayer ◽  
...  

Abstract Migrating cells move across diverse assemblies of extracellular matrix (ECM) that can be separated by micron-scale gaps. For membranes to protrude and reattach across a gap, actin filaments, which are relatively weak as single filaments, must polymerize outward from adhesion sites to push membranes towards distant sites of new adhesion. Here, using micropatterned ECMs, we identify T-Plastin, one of the most ancient actin bundling proteins, as an actin stabilizer that promotes membrane protrusions and enables bridging of ECM gaps. We show that T-Plastin widens and lengthens protrusions and is specifically enriched in active protrusions where F-actin is devoid of non-muscle myosin II activity. Together, our study uncovers critical roles of the actin bundler T-Plastin to promote protrusions and migration when adhesion is spatially-gapped.


2018 ◽  
Author(s):  
Deqing Kong ◽  
Zhiyi Lv ◽  
Matthias Häring ◽  
Fred Wolf ◽  
Joerg Grosshans

The spatial and temporal dynamics of cell contractility plays a key role in tissue morphogenesis, wound healing and cancer invasion. Here we report a simple, single cell resolution, optochemical method to induce minute-scale cell contractions in vivo during morphogenesis. We employed the photolabile Ca2+ chelator o-nitrophenyl EGTA to induce bursts of intracellular free Ca2+ by laser photolysis. Ca2+ bursts appear within seconds and are restricted to individual target cells. Cell contraction reliably followed within a minute, to about half of the cross-sectional area. Increased Ca2+ levels and contraction were reversible and the target cells further participated in tissue morphogenesis. Depending on Rho kinase (Rok) activity but not RhoGEF2, cell contractions are paralleled with non-muscle myosin-II accumulation in the apico-medial cortex, indicating that Ca2+ bursts trigger non-muscle myosin II activation. Our approach can be easily adapted to many experimental systems and species, as no specific genetic elements are required and a widely used reagent is employed.


2009 ◽  
Vol 10 (11) ◽  
pp. 778-790 ◽  
Author(s):  
Miguel Vicente-Manzanares ◽  
Xuefei Ma ◽  
Robert S. Adelstein ◽  
Alan Rick Horwitz

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Claudia G Vasquez ◽  
Sarah M Heissler ◽  
Neil Billington ◽  
James R Sellers ◽  
Adam C Martin

Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1926
Author(s):  
Míriam Javier-Torrent ◽  
Carlos A. Saura

Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.


2018 ◽  
Author(s):  
Emma J. Mah ◽  
Gabrielle E. McGahey ◽  
Albert F. Yee ◽  
Michelle A. Digman

Extracellular matrix (ECM) mechanical properties play a key role in cancer cell aggressiveness. Increasing substrate stiffness upregulates cancer invasion, cell contractility and focal adhesion formation. In addition to matrix properties, alteration in energy metabolism is a known characteristic of cancer cells (i.e., Warburg effect) and modulates cell invasion. However, there has been little evidence to show that substrate stiffness is able to affect cancer cell metabolism. Thus, we investigated changes in energy metabolism in response to varying collagen matrix stiffness in different cancer cells, MDA-MB231, AA375MM and U251MG and non-tumorigenic breast cell line MCF10A. Using the phasor approach to fluorescent lifetime imaging microscopy (FLIM), we measured the lifetime ratio of the free:bound state of NADH and determined if these cells altered their metabolism when plated on varying ECM density. This approach is a powerful tool that allows us to map the metabolic trajectory of each living cell within its cellular compartments. In our studies, we found that MDA-MB231 cells had an increase in bound NADH, indicating oxidative phosphorylation (OXPHOS), as collagen substrate density decreased. When inhibiting myosin-II contractility with Y-27632 or blebbistatin, the MDA-MB231 cells on glass shifted from glycolysis (GLY) to OXPHOS, confirming the intricate relationship between mechanosensing and metabolism in these highly invasive tumor cells. The human glioblastoma cell line, U251MG, showed an opposite trend compared to the invasive MDA-MB231 cells. However, the human melanoma cell line, A375MM did not show any significant changes in metabolic indices when they were grown on surfaces with varying collagen density but changed when grown on glass surfaces. MCF10A cells showed no changes in metabolism across all surfaces. In addition, OXPHOS or GLY inhibitors to MDA-MB231 cells showed dramatic shifts from OXPHOS to GLY or vice versa. There were slight changes detected in MCF10A cells. These results provide an important link between cellular metabolism, contractility and ECM stiffness in human breast cancer.


2012 ◽  
Vol 199 (3) ◽  
pp. 545-563 ◽  
Author(s):  
Mei Rosa Ng ◽  
Achim Besser ◽  
Gaudenz Danuser ◽  
Joan S. Brugge

The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration.


2020 ◽  
Author(s):  
Lungwani Muungo

ADP ribosylation factor GTPase-activating protein 3 (ARFGAP3) is a GTPase-activating protein that associates with the Golgiapparatus and regulates the vesicular trafficking pathway. In the present study, we examined the contribution of ARFGAP3 toprostate cancer cell biology. We showed that ARFGAP3 expression was induced by 100 nM of dihydrotestosterone (DHT) atboth the mRNA and protein levels in androgen-sensitive LNCaP cells. We generated stable transfectants of LNCaP cells withFLAG-tagged ARFGAP3 or a control empty vector and showed that ARFGAP3 overexpression promoted cell proliferation andmigration compared with control cells. We found that ARFGAP3 interacted with paxillin, a focal adhesion adaptor protein thatis important for cell mobility and migration. Small interfering RNA (siRNA)-mediated knockdown of ARFGAP3 showed thatARFGAP3 siRNA markedly reduced LNCaP cell growth. Androgen receptor (AR)-dependent transactivation activity on prostatespecificantigen (PSA) enhancer was synergistically promoted by exogenous ARFGAP3 and paxillin expression, as shown byluciferase assay in LNCaP cells. Thus, our results suggest that ARFGAP3 is a novel androgen-regulated gene that can promoteprostate cancer cell proliferation and migration in collaboration with paxillin.


Sign in / Sign up

Export Citation Format

Share Document