Fabrication and thermo stability of the SnO2/Ag/SnO2 tri-layer transparent conductor deposited by magnetic sputtering

2021 ◽  
Vol 47 (3) ◽  
pp. 3548-3552
Author(s):  
Wei Wang ◽  
Xiaojun Wei ◽  
Chuanshen Wang ◽  
Wencai Zhou ◽  
Bailin Zhu ◽  
...  
2008 ◽  
Author(s):  
Yasushi Hirose ◽  
Naoomi Yamada ◽  
Shoichiro Nakao ◽  
Taro Hitosugi ◽  
Toshihiro Shimada ◽  
...  

2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


2018 ◽  
Author(s):  
Peter George Gordon ◽  
Goran Bacic ◽  
Gregory P. Lopinski ◽  
Sean Thomas Barry

Al-doped ZnO (AZO) is a promising earth-abundant alternative to Sn-doped In<sub>2</sub>O<sub>3</sub> (ITO) as an n-type transparent conductor for electronic and photovoltaic devices; AZO is also more straightforward to deposit by atomic layer deposition (ALD). The workfunction of this material is particularly important for the design of optoelectronic devices. We have deposited AZO films with resistivities as low as 1.1 x 10<sup>-3</sup> Ωcm by ALD using the industry-standard precursors trimethylaluminum (TMA), diethylzinc (DEZ), and water at 200<sup>◦</sup>C. These films were transparent and their elemental compositions showed reasonable agreement with the pulse program ratios. The workfunction of these films was measured using a scanning Kelvin Probe (sKP) to investigate the role of aluminum concentration. In addition, the workfunction of AZO films prepared by two different ALD recipes were compared: a “surface” recipe wherein the TMA was pulsed at the top of each repeating AZO stack, and a interlamellar recipe where the TMA pulse was introduced halfway through the stack. As aluminum doping increases, the surface recipe produces films with a consistently higher workfunction as compared to the interlamellar recipe. The resistivity of the surface recipe films show a minimum at a 1:16 Al:Zn atomic ratio and using an interlamellar recipe, minimum resistivity was seen at 1:19. The film thicknesses were characterized by ellipsometry, chemical composition by EDX, and resistivity by four-point probe.<br>


2021 ◽  
Vol 11 (11) ◽  
pp. 5112
Author(s):  
Julia Vega ◽  
Geniane Schneider ◽  
Bruna R. Moreira ◽  
Carolina Herrera ◽  
José Bonomi-Barufi ◽  
...  

Macroalgae belong to a diverse group of organisms that could be exploited for biomolecule application. Among the biocompounds found in this group, mycosporine-like amino acids (MAAs) are highlighted mainly due to their photoprotection, antioxidant properties, and high photo and thermo-stability, which are attractive characteristics for the development of cosmeceutical products. Therefore, here we revise published data about MAAs, including their biosynthesis, biomass production, extraction, characterization, identification, purification, and bioactivities. MAAs can be found in many algae species, but the highest concentrations are found in red macroalgae, mainly in the order Bangiales, as Porphyra spp. In addition to the species, the content of MAAs can vary depending on environmental factors, of which solar radiation and nitrogen availability are the most influential. MAAs can confer photoprotection due to their capacity to absorb ultraviolet radiation or reduce the impact of free radicals on cells, among other properties. To extract these compounds, different approaches can be used. The efficiency of these methods can be evaluated with characterization and identification using high performance liquid chromatography (HPLC), associated with other apparatus such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). Therefore, the data presented in this review allow a broad comprehension of MAAs and show perspectives for their inclusion in cosmeceutical products.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2575
Author(s):  
Smaher M. Elbayomi ◽  
Haili Wang ◽  
Tamer M. Tamer ◽  
Yezi You

The preparation of bioactive polymeric molecules requires the attention of scientists as it has a potential function in biomedical applications. In the current study, functional substitution of alginate with a benzoyl group was prepared via coupling its hydroxyl group with benzoyl chloride. Fourier transform infrared spectroscopy indicated the characteristic peaks of aromatic C=C in alginate derivative at 1431 cm−1. HNMR analysis demonstrated the aromatic protons at 7.5 ppm assigned to benzoyl groups attached to alginate hydroxyl groups. Wetting analysis showed a decrease in hydrophilicity in the new alginate derivative. Differential scanning calorimetry and thermal gravimetric analysis showed that the designed aromatic alginate derivative demonstrated higher thermo-stability than alginates. The aromatic alginate derivative displayed high anti-inflammatory properties compared to alginate. Finally, the in vitro antioxidant evaluation of the aromatic alginate derivative showed a significant increase in free radical scavenging activity compared to neat alginate against DPPH (2,2-diphenyll-picrylhydrazyl) and ABTS free radicals. The obtained results proposed that the new alginate derivative could be employed for gene and drug delivery applications.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yang Wang ◽  
Jae-Hyun Park ◽  
Cecylia Severin Lupala ◽  
Ji-Hye Yun ◽  
Zeyu Jin ◽  
...  

2015 ◽  
Vol 7 (25) ◽  
pp. 14140-14149 ◽  
Author(s):  
Junpeng Li ◽  
Shuhua Qi ◽  
Jiajie Liang ◽  
Lu Li ◽  
Yan Xiong ◽  
...  

2021 ◽  
Author(s):  
Jia-Wei Chen ◽  
Shaobo Yang ◽  
Chia-Hao Li ◽  
Yang-Yi Huang ◽  
Chen-Hua Chen ◽  
...  

Abstract The variation behaviors of the morphology, transmission, and sheet resistance of the surface Ag/AgO nano-network (NNW) structures fabricated under different illumination conditions and with different Ag deposition thicknesses and thermal annealing temperatures in forming initial Ag nanoparticles (NPs) are studied. Generally, an NNW structure with a smaller mesh size or a denser branch distribution has a lower transmission and a lower sheet resistance level. Under the fabrication condition of a broader illumination spectrum, a lower thermal annealing temperature, or a thicker Ag deposition, we can obtain an NNW structure of a smaller mesh size. The mesh size of an NNW structure is basically controlled by the seed density of Brownian tree (BT) at the beginning of light illumination. A BT-seed can be formed through a stronger local localized surface plasmon resonance for accelerating Ag oxidation in a certain region. Once an Ag/AgO BT-seed is formed, the surrounding Ag NPs are reorganized to form the branches of a BT. Multiple BTs are connected to form a large-area NNW structure, which can serve as a transparent conductor. Under the fabrication conditions of a broader illumination spectrum, 3-nm Ag deposition, and 100-degree-C thermal annealing, we can implement an NNW structure to achieve ~1.15 micron in mesh size, ~90 Ohm/sq in sheet resistance, and 93-77 % in transmittance within the wavelength range between 370 and 700 nm.


Sign in / Sign up

Export Citation Format

Share Document