scholarly journals Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam

2013 ◽  
Vol 43 ◽  
pp. 233-241 ◽  
Author(s):  
Yining Ding ◽  
Zhipei Chen ◽  
Zhibo Han ◽  
Yulin Zhang ◽  
F. Pacheco-Torgal
2020 ◽  
Vol 9 (1) ◽  
pp. 445-454 ◽  
Author(s):  
Juhong Han ◽  
Dunbin Wang ◽  
Peng Zhang

AbstractIn this study, the pressure sensitivity and temperature sensitivity of the diphasic electric conduction concrete were investigated by measuring the resistivity using the four-electrode method. The diphasic electric conduction concrete was obtained by mixing nano and micro conductive materials (carbon nanofibers, nano carbon black and steel slag powder) into the carbon fiber reinforced concrete (CFRC). The results indicated that, with the increase of conduction time, the resistivity of CFRC decreased slightly at the initial stage and then became steady, while the resistivity of CFRC containing nano carbon black had a sharp decrease at the dosage of 0.6%. With the increase of compression load, the coefficient of resistivity variation of CFRC containing nano carbon black and steel slag powder changed little. The coefficient of resistivity variation increased with the increase of steel slag powder in the dry environment, and CFRC had preferable pressure sensitivity when the mass fractions of carbon fiber and carbon nanofiber were 0.4% and 0.6%, respectively. Besides, in the humid environment, the coefficient of resistivity variation decreased with the increase of steel slag powder, and the diphasic electric conduction concrete containing 0.4% carbon fibers and 20% steel slag powder had the best pressure sensitivity under the damp environment. Moreover, in the dry environment, CFRC containing nano and micro conductive materials presented better temperature sensitivity in the heating stage than in the cooling stage no matter carbon nanofiber, nano carbon black or steel slag powder was used, especially for the CFRC containing steel slag powder.


2010 ◽  
Vol 168-170 ◽  
pp. 1021-1024
Author(s):  
Guo Xuan Xiong ◽  
Zhi Bin Zhang ◽  
Min Deng ◽  
Yu Fen Zhou

The cement-based composite shielding materials filled with carbon materials such as ordinary carbon materials (graphite, coke and carbon black), carbon fiber and nano-carbon materials (carbon nano-tube and nano-carbon black) were prepared. The relationship of conductivity and shielding effectiveness in a frequency range of 100 KHz~1.5 GHz was studied. The electric properties of cement-based composites filled with carbon fiber is better than other carbon materials. With the contents of carbon fiber of 5.vol%, the average shielding effectiveness is about 37 dB and the maximum shielding effectiveness reaches 40 dB.


2005 ◽  
Vol 99 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Huihui Zhang ◽  
Liwei Guo ◽  
Huili Shao ◽  
Xuechao Hu

2011 ◽  
Vol 13 (4) ◽  
pp. 77-81 ◽  
Author(s):  
Zbigniew Czech ◽  
Robert Pełech ◽  
Agnieszka Kowalczyk ◽  
Arkadiusz Kowalski ◽  
Rafał Wróbel

Electrically conductive acrylic pressure-sensitive adhesives containing carbon black Acrylic pressure-sensitive adhesives (PSA) are non electrical conductive materials. The electrical conductivity is incorporated into acrylic self-adhesive polymer after adding electrically conductive additives like carbon black, especially nano carbon black. After an addition of electrical conductive carbon black, the main and typical properties of pressure-sensitive adhesives such as tack, peel adhesion and shear strength, are deteriorated. The investigations reveals that the acrylic pressure-sensitive adhesives basis must be synthesised with ameliorated initial performances, like high tack, excellent adhesion and very good cohesion. Currently, the electrical conductive solvent-borne acrylic PSA containing carbon black are not commercially available on the market. They are promising materials which can be applied for the manufacturing of diverse technical high performance self-adhesive products, such as broadest line of special electrically conductive sensitive tapes.


2017 ◽  
Vol 52 (11) ◽  
pp. 1495-1503 ◽  
Author(s):  
K Hamdi ◽  
Z Aboura ◽  
W Harizi ◽  
K Khellil

This work tends to characterize the effect of carbon black nanofillers on the properties of the woven carbon fiber reinforced thermoplastic polymers. First of all, composites from nanofilled Polyamide 6 resin reinforced by carbon fibers were fabricated. Scanning electron microscopy observations were performed to localize the nanoparticles and showed that particles penetrated the fiber zone. In fact, by reaching this zone, the carbon black nanofillers create a connectivity's network between fibers, which produces an easy pathway for the electrical current. It explains the noticed improvement of the electrical conductivity of the carbon black nanofilled composites. Electrical conductivity of neat matrix composite passed from 20 to 80 S/cm by adding 8 wt% of carbon black and to 140 S/cm by adding 16 wt% of the same nanofiller. The addition of nanofillers modifies the heating and cooling laws of carbon fiber reinforced polymer: the nanofilled carbon fiber reinforced polymer with 16 wt% is the most conductive so it heats less. Based on these results, the use of the composite itself as an indicator of this mechanical state might be possible. In fact, the study of the influence of a mechanical loading on the electrical properties of the composite by recording the variance of an electrical set is possible.


2013 ◽  
Vol 641-642 ◽  
pp. 393-397
Author(s):  
Le Zhou ◽  
Jun Wei Wang ◽  
Hong Tao Liu

Based on the cross-section bending of 5 carbon fiber concrete beams, the mechanism of deflection and strain of carbon fiber concrete beam were studied considering the variation of the length of carbon fiber. The experimental results show that the deflection of destruction increased with the increase of the length of the carbon fiber. The carbon fiber can effectively improve the brittle failure of concrete beam, and the stain of concrete accorded with that steel bar at the same height. According to the existing test model, the theoretical calculating formula of CFRC was proposed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 664 ◽  
Author(s):  
Junsong Hu ◽  
Junsheng Yu ◽  
Ying Li ◽  
Xiaoqing Liao ◽  
Xingwu Yan ◽  
...  

The reasonable design pattern of flexible pressure sensors with excellent performance and prominent features including high sensitivity and a relatively wide workable linear range has attracted significant attention owing to their potential application in the advanced wearable electronics and artificial intelligence fields. Herein, nano carbon black from kerosene soot, an atmospheric pollutant generated during the insufficient burning of hydrocarbon fuels, was utilized as the conductive material with a bottom interdigitated textile electrode screen printed using silver paste to construct a piezoresistive pressure sensor with prominent performance. Owing to the distinct loose porous structure, the lumpy surface roughness of the fabric electrodes, and the softness of polydimethylsiloxane, the piezoresistive pressure sensor exhibited superior detection performance, including high sensitivity (31.63 kPa−1 within the range of 0–2 kPa), a relatively large feasible range (0–15 kPa), a low detection limit (2.26 pa), and a rapid response time (15 ms). Thus, these sensors act as outstanding candidates for detecting the human physiological signal and large-scale limb movement, showing their broad range of application prospects in the advanced wearable electronics field.


Sign in / Sign up

Export Citation Format

Share Document