scholarly journals Age Patterning in Wild Chimpanzee Gut Microbiota Diversity Reveals Differences from Humans in Early Life

2020 ◽  
Author(s):  
Aspen T. Reese ◽  
Sarah R. Phillips ◽  
Leah A. Owens ◽  
Emily M. Venable ◽  
Kevin E. Langergraber ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Zhu ◽  
Yudong Li ◽  
Haiqiong Yang ◽  
Ke He ◽  
Keyi Tang

Gut microbiota during early life could influence host fitness in vertebrates. Studies on how gut microbiota colonize the gut in birds using frequent sampling during early developmental stages and how shifts in microbiota diversity influence host growth are lacking. Here, we examine the microbiome profiles of 151 fecal samples from 14 young crested ibis (Nipponia nippon), an endangered bird species, collected longitudinally across 13 time points during the early stages of development and investigated their correlation with host growth. Gut diversity showed a non-linear change during development, which involved multiple colonization and extinction events, mainly associated with Proteobacteria and Firmicutes. Gut microbiota in young crested ibis became more similar with increasing age. In addition, gut microbiota exhibited a strong temporal structure and two specific developmental stages; the beginning of the latter stage coincided with the introduction of fresh loach, with a considerable increase in the relative abundance of Fusobacteria and several Firmicutes, which may be involved in lipid metabolism. Crested ibis chick growth rate was negatively correlated with gut microbiota diversity and negatively associated with the abundance of Halomonadaceae, Streptococci, Corynebacteriaceae, and Dietziaceae. Our findings highlight the importance of frequent sampling when studying microbiome development during early stages of development of vertebrates. The role of microbial diversity in host growth during the early stages of development of birds warrants further investigations.


2020 ◽  
Vol 98 (11) ◽  
Author(s):  
Chao Yan ◽  
Kate Hartcher ◽  
Wen Liu ◽  
Jinlong Xiao ◽  
Hai Xiang ◽  
...  

Abstract Conditions in early life play profound and long-lasting effects on the welfare and adaptability to stress of chickens. This study aimed to explore the hypothesis that the provision of environmental complexity in early life improves birds’ adaptive plasticity and ability to cope with a challenge later in life. It also tried to investigate the effect of the gut-brain axis by measuring behavior, stress hormone, gene expression, and gut microbiota. One-day-old chicks were split into 3 groups: (1) a barren environment (without enrichment items) group (BG, n = 40), (2) a litter materials group (LG, n = 40), and (3) a perches with litter materials group (PLG, n = 40). Then, enrichment items were removed and simulated as an environmental challenge at 31 to 53 d of age. Birds were subjected to a predator test at 42 d of age. In the environmental challenge, when compared with LG, PLG birds were characterized by decreased fearfulness, lower plasma corticosterone, improved gut microbial functions, lower relative mRNA expression of GR, and elevated mRNA expressions of stress-related genes CRH, BDNF, and NR2A in the hypothalamus (all P < 0.05). Unexpectedly, the opposite was true for the LG birds when compared with the BG (P < 0.05). Decreased plasma corticosterone and fearfulness were accompanied by altered hypothalamic gene mRNA expressions of BDNF, NR2A, GR, and CRH through the HPA axis in response to altered gut microbial compositions and functions. The findings suggest that gut microbiota may integrate fearfulness, plasma corticosterone, and gene expression in the hypothalamus to provide an insight into the gut-brain axis in chicks. In conclusion, having access to both perches and litter materials in early life allowed birds to cope better with a future challenge. Birds in perches and litter materials environment may have optimal development and adaptive plasticity through the gut-brain axis.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2412
Author(s):  
Sonia González ◽  
Marta Selma-Royo ◽  
Silvia Arboleya ◽  
Cecilia Martínez-Costa ◽  
Gonzalo Solís ◽  
...  

The early life gut microbiota has been reported to be involved in neonatal weight gain and later infant growth. Therefore, this early microbiota may constitute a target for the promotion of healthy neonatal growth and development with potential consequences for later life. Unfortunately, we are still far from understanding the association between neonatal microbiota and weight gain and growth. In this context, we evaluated the relationship between early microbiota and weight in a cohort of full-term infants. The absolute levels of specific fecal microorganisms were determined in 88 vaginally delivered and 36 C-section-delivered full-term newborns at 1 month of age and their growth up to 12 months of age. We observed statistically significant associations between the levels of some early life gut microbes and infant weight gain during the first year of life. Classifying the infants into tertiles according to their Staphylococcus levels at 1 month of age allowed us to observe a significantly lower weight at 12 months of life in the C-section-delivered infants from the highest tertile. Univariate and multivariate models pointed out associations between the levels of some fecal microorganisms at 1 month of age and weight gain at 6 and 12 months. Interestingly, these associations were different in vaginally and C-section-delivered babies. A significant direct association between Staphylococcus and weight gain at 1 month of life was observed in vaginally delivered babies, whereas in C-section-delivered infants, lower Bacteroides levels at 1 month were associated with higher later weight gain (at 6 and 12 months). Our results indicate an association between the gut microbiota and weight gain in early life and highlight potential microbial predictors for later weight gain.


2021 ◽  
Vol 22 (7) ◽  
pp. 3382
Author(s):  
Silvia Saturio ◽  
Alicja M. Nogacka ◽  
Marta Suárez ◽  
Nuria Fernández ◽  
Laura Mantecón ◽  
...  

The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged.


Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-21
Author(s):  
Jielong Guo ◽  
Chenglong Ren ◽  
Xue Han ◽  
Weidong Huang ◽  
Yilin You ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyemin Jeong ◽  
In Young Kim ◽  
Eun-Kyung Bae ◽  
Chan Hong Jeon ◽  
Kwang-Sung Ahn ◽  
...  

AbstractAnkylosing spondylitis is a male-predominant disease and previous study revealed that estrogens have an anti-inflammatory effect on the spondyloarthritis (SpA) manifestations in zymosan-induced SKG mice. This study aimed to evaluate the effect of selective estrogen receptor modulator (SERM) lasofoxifene (Laso) on disease activity of SpA. Mice were randomized into zymosan-treated, zymosan + 17β-estradiol (E2)-treated, and zymosan + Laso-treated groups. Arthritis was assessed by 18F-fluorodeoxyglucose (18F-FDG) small-animal positron emission tomography/computed tomography and bone mineral density (BMD) was measured. Fecal samples were collected and 16S ribosomal RNA gene sequencing was used to determine gut microbiota differences. Both zymosan + E2-treated mice and zymosan + Laso-treated mice showed lower arthritis clinical scores and lower 18F-FDG uptake than zymosan-treated mice. BMD was significantly higher in zymosan + E2-treated mice and zymosan + Laso-treated mice than zymosan-treated mice, respectively. Fecal calprotectin levels were significantly elevated at 8 weeks after zymosan injection in zymosan-treated mice, but it was not significantly changed in zymosan + E2-treated mice and zymosan + Laso-treated mice. Gut microbiota diversity of zymosan-treated mice was significantly different from zymosan + E2-treated mice and zymosan + Laso-treated mice, respectively. There was no significant difference in gut microbiota diversity between zymosan + E2-treated mice and zymosan + Laso -treated mice. Laso inhibited joint inflammation and enhanced BMD in SKG mice, a model of SpA. Laso also affected the composition and biodiversity of gut microbiota. This study provides new knowledge regarding that selected SpA patients could benefit from SERM treatment.


2021 ◽  
Vol 22 (4) ◽  
pp. 1899 ◽  
Author(s):  
Hae Jeong Park ◽  
Sang A. Kim ◽  
Won Sub Kang ◽  
Jong Woo Kim

Recent studies have reported that changes in gut microbiota composition could induce neuropsychiatric problems. In this study, we investigated alterations in gut microbiota induced by early-life stress (ELS) in rats subjected to maternal separation (MS; 6 h a day, postnatal days (PNDs) 1–21), along with changes in inflammatory cytokines and tryptophan-kynurenine (TRP-KYN) metabolism, and assessed the differences between sexes. High-throughput sequencing of the bacterial 16S rRNA gene showed that the relative abundance of the Bacteroides genus was increased and that of the Lachnospiraceae family was decreased in the feces of MS rats of both sexes (PND 56). By comparison, MS increased the relative abundance of the Streptococcus genus and decreased that of the Staphylococcus genus only in males, whereas the abundance of the Sporobacter genus was enhanced and that of the Mucispirillum genus was reduced by MS only in females. In addition, the levels of proinflammatory cytokines were increased in the colons (IFN-γ and IL-6) and sera (IL-1β) of the male MS rats, together with the elevation of the KYN/TRP ratio in the sera, but not in females. In the hippocampus, MS elevated the level of IL-1β and the KYN/TRP ratio in both male and female rats. These results indicate that MS induces peripheral and central inflammation and TRP-KYN metabolism in a sex-dependent manner, together with sex-specific changes in gut microbes.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Angie Jefferson ◽  
Katie Adolphus

AbstractThe influence on health of the human gut microbiota is increasingly recognised, however wheat fibre, consumed frequently in Western diets has traditionally been considered inert with regard to gut microbiota composition and metabolic activity. We undertook a systematic review (PRISMA methodology) of human intervention studies examining the effects of intact cereal fibres on gut microbiota composition among healthy adults.(1) Studies published in the past 20 years were identified on PubMed and Cochrane electronic databases. Inclusion criteria were: healthy adult participants, at least one intact cereal fibre (or its sub-fraction) and measurement of faecal microbiota related outcomes. Out of forty studies meeting inclusion criteria, seventeen manipulated wheat fibre/bran or its key constituent arabinoxylans (AXOS), and ten used a whole diet approach with predominantly wheat fibre. Results from these twenty seven wheat fibre papers are presented here. Eight studies provided wheat bran/fibre (ranging from 5.7g-21g/day wheat fibre or 13g-28g/day wheat bran). Three reported significant effects on gut microbiota abundance and/or diversity (both at phyla and species level) and one showed no effect. Six reported significant increases in fermentation metabolites and one reported no significant change. Ten studies manipulated whole day fibre intake (predominantly wheat but also permitting some oats, rye and rice). Wholegrain intake ranged from 80g-150 g per day and fibre from 13.7g–40 g per day. Six found significant increases in bacterial diversity and/or abundance and five showed significant increases in fermentation metabolites. Two identified that response to high fibre intervention is dependent on baseline gut microbiota richness - those with limited richness exhibiting greater microbiota change over time in response to fibre increase. Two reported no significant effects. Nine studies utilised manipulation of AXOS (2.2g–18.8 g per day) with five demonstrating significant increases in target bacterial species and six significant increases in fermentation metabolites. One reported no significant effect to faecal metabolites. This review supports a role for the wheat fibre found in everyday foods (such as bran breakfast cereal of high fibre breads) promoting both microbiota diversity and abundance. While the healthy microbiome is yet to be defined, consumption of a single daily serving of wheat bran fibre appears sufficient to effect gut microbiota fermentation (with demonstrable effects arising from as low as 6g/day), and promote species diversity, with potential benefit to health.However exploration of stability over longer time frames (> 12 weeks) is now required.


Sign in / Sign up

Export Citation Format

Share Document