scholarly journals The effect of the amount and particle size of the waste quartz powder on the adhesive properties of epoxy resin coatings

Author(s):  
Agnieszka Chowaniec ◽  
Sławomir Czarnecki ◽  
Łukasz Sadowski
2020 ◽  
Vol 40 (4) ◽  
pp. 314-320 ◽  
Author(s):  
Tariq Aziz ◽  
Hong Fan ◽  
Xiangwei Zhang ◽  
Farman Ullah Khan ◽  
Shah Fahad ◽  
...  

AbstractThe adhesive properties of a self-prepared bio-based epoxy resin with native cellulose nanocrystals (CNCs) are evaluated in this article. The porosity of actual CNCs is high. The most promising finding is the acquisition of high tensile modulus. The addition of CNC composites significantly increased the tensile modulus at lower wt.%, and the maximum crystallinity of CNCs was obtained. Bearing in mind the advantages of CNCs, scanning electron microscopy (SEM) showed a uniform distribution of concentrated CNCs. Clusters were formed at higher CNCs ratios, and the composite matrix content with high CNCs produced good expansion, low crystallinity, and increased elongation. Our analysis showed that the original CNCs were more evenly distributed in the self-prepared bio-based epoxy resin, which enhanced transformation, supported by improved dispersion of native CNCs. The presence of native CNCs greatly improved and enhanced the bonding performance of the bio-based epoxy resin in the interface area. Enhancing the mechanical properties of native CNCs has broad application prospects in environmental areas. This suggests that the widespread use of native CNCs in environmental engineering applications is feasible, especially in terms of adhesives properties.


2018 ◽  
Vol 101 ◽  
pp. 211-217 ◽  
Author(s):  
Miroslav Huskić ◽  
Silvester Bolka ◽  
Alenka Vesel ◽  
Miran Mozetič ◽  
Alojz Anžlovar ◽  
...  

2020 ◽  
Vol 234 (11-12) ◽  
pp. 1759-1769 ◽  
Author(s):  
Tariq Aziz ◽  
Hong Fan ◽  
Farman Ullah Khan ◽  
Roh Ullah ◽  
Fazal Haq ◽  
...  

AbstractIn the current research, we observed numerous suggestions are promoting the use of bio-based epoxy resins, replacing the petroleum-based products like Diglycidyl ether of bisphenol A type epoxy resin DGEBA. With the passage of time, the impending challenges include preparation of environmentally-friendly epoxy with minimum toxic side effect and improved properties. Therefore, we describe a very useful method for preparing new silicone-bridged dimethyl siloxane monomers in high quantity, derived from naturally occurring eugenol. By putting the methyl siloxane, computed with different chain lengths into their molecular backbone. Such epoxy monomers have different molecular structure with high purity. This dimethyl siloxane epoxy, with lower viscosity than commercial DGEBA epoxy, has superior thermal properties, which were evaluated using differential scanning calorimetry DSC. Modification of CMS increases the hydrophilicity. Bio-based epoxy (self-prepared) resin improved adhesive properties, with the help of modified CMS. This study presents a very easy and effective chemical modification to enhance interfacial adhesion composites with superior properties.


2005 ◽  
Vol 297-300 ◽  
pp. 207-212 ◽  
Author(s):  
Soon Chul Kwon ◽  
Tadaharu Adachi ◽  
Wakako Araki ◽  
Akihiko Yamaji

We investigated the particle size effects on the fracture toughness of epoxy resin composites reinforced with spherical-silica particles. The silica particles had different mean particle diameters of between 1.56 and 0.24µm and were filled with bisphenol A-type epoxy resin under different mixture ratios of small and large particles and a constant volume fraction for all particles of 0.30. As the content with the added smaller particle increased, the viscosity of each composite before curing remarkably increased. We conducted the single edge notched bending test (SENB) to measure the mode I fracture toughness of each composite. The fracture surface with the small particle content exhibited more rough areas than the surface with larger particles. The fracture toughness increased below the small particle content of 0.8 and saturated above it. Therefore, near the small particle content of 0.8, the composite had a relatively low viscosity and a high fracture toughness.


Polymer ◽  
1991 ◽  
Vol 32 (12) ◽  
pp. 2221-2229 ◽  
Author(s):  
Yoshinobu Nakamura ◽  
Miho Yamaguchi ◽  
Akiko Kitayama ◽  
Masayoshi Okubo ◽  
Tsunetaka Matsumoto

2013 ◽  
Vol 801 ◽  
pp. 67-73 ◽  
Author(s):  
Petr Valášek ◽  
Jozef Žarnovský ◽  
Miroslav Müller

The paper describes the mechanical qualities of thermoset – epoxy resin filled with recycled rubber in the form of micro-particles. Such an application of waste can be regarded as material usage which should be preferred to other ways of waste handling. Micro-particles of recycled rubber affect the mechanical qualities of polymer in which they are dispersed. The paper quantifies cohesive and adhesive properties of the filled epoxy resin. Filling polymers – thermosets with waste fillers saves costs, it does not burden the environment, and it is inexpensive. The results described in this paper can lead to enlarging the application areas of recycled rubbers. As the filler, recycled rubber gained by the process of an ecological disposal of tyres by Gumoeko, s.r.o. (private limited company) was used.


Sign in / Sign up

Export Citation Format

Share Document