Biofuel production from Pachira aquatic Aubl and Magonia pubescens A St-Hil: Physical-chemical properties of neat vegetable oils, methyl-esters and bio-oils (hydrocarbons)

2019 ◽  
Vol 127 ◽  
pp. 158-163 ◽  
Author(s):  
Lincoln P. Oliveira ◽  
Mateus de A. Montenegro ◽  
Francisco C.A. Lima ◽  
Paulo A.Z. Suarez ◽  
Eid Cavalcante da Silva ◽  
...  
Author(s):  
Giuseppe Di Vito Nolfi ◽  
Katia Gallucci ◽  
Leucio Rossi

Non-renewable fossil fuels and the air pollution associated with their combustion have made it necessary to develop fuels that are environmentally friendly and produced from renewable sources. In addition, global warming and climate change have brought to the attention of many countries the need to develop programs and reforms, such as the 2030 Agenda of the United Nations and the European Green Deal, that finance and promote the conversion of all socio-economic activities in favor of sustainable and environmentally friendly development. These major projects include the development of non-polluting biofuels derived from renewable sources. Vegetable oils are a renewable source widely used to produce biofuels due to their high energy density and similar chemical composition to petroleum derivatives, making them the perfect feedstock for biofuel production. Green diesel and other hydrocarbon biofuels, obtained by the catalytic deoxygenation of vegetable oils, represent a sustainable alternative to mineral diesel, as they have physico-chemical properties similar to derived oil fuels. The catalyst, temperature, hydrogen pressure, and the type of vegetable oil can influence the type of biofuel obtained and its properties. The main aspects discussed in this review include the influence of the catalyst and reaction conditions on the catalytic deoxygenation reaction.


2017 ◽  
Vol 168 (1) ◽  
pp. 197-200
Author(s):  
Marta AMBROSEWICZ-WALACIK ◽  
Małgorzata TAŃSKA ◽  
Marek WALACIK ◽  
Michał KOZŁOWSKI

The aim of the study was to determine the possibility of using the unconventional vegetable oils for the biofuel production. The research material were cold-pressed oils from the seeds of milk thistle, hemp and evening primrose. After conducting the initial physicochemical characteristics of oil samples, including the determination of sulphur content, acid number, viscosity at 40°C, density at 15ºC, oxidation stability and fatty acid composition, analysed oils have been subjected to the transesterification process. The roduced methyl esters were further characterized by the above-mentioned features. Additionally, the temperatures of cold filter plugging point, cloud point and flash point were determined. On the basis of the conducted analyses it was demonstrated that the obtained oils, due to the high, far in excess of acceptable, values of the viscosity and density, and too low oxidative stability could not be used as a pure fuel. A similar conclusion was formulated in case of the produced methyl esters.


2015 ◽  
Vol 11 (8) ◽  
pp. 3819-3827
Author(s):  
M.N. Amiraslanova

Synthesis of nitrogen-containing phenolformaldehyde oligomers (phfo), grafted with vegetable  oils is aimed at the acquisition of new range coating materials. Oil has been used as an example of soybean and linseed oils. The interaction  between phfo and vegetable oil is carried out by  means of functional groups as result of the oxidation prosesses on carbon atoms adjacent to the double bond and the functional groups,including oligomer macromolecules. Physical-chemical properties of nitrogen-containing as result of modification by means of benzoguanamine (bga)  monoalkyl (C8-C12)phfo, grafted with soybean oil is reflected. The probable structure  of the nitrogen-containing monoalkyl(C8-C12)phfo, grafted with soybean oil has been studied by means of NMR- and IR-spectroscopy methods. The mechanism of the occurrence of first and second stages of the process are described.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Cristina Dusescu ◽  
Anca Borcea ◽  
Vasile Matei ◽  
Ion Popa ◽  
Irina Gabriela Radulescu

The present paper studies biodiesel samples preparation by transesterification and compares their physical and chemical properties (biofuels prepared from different raw materials - vegetable oils: sunflower oil, crocus oil and soya bean oil) and the biodegradability degree, as well as the possibilities of the integration of such production unit in industrial diagram of auto fuels production.


1986 ◽  
Vol 21 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Barry G. Oliver ◽  
Klaus L.E. Kaiser

Abstract The concent rat ions of hexachloroethane (HCE), hexachlorobutadiene (HCBD), pentachlorobenzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in large volume water samples show that the major sources of these chemicals to the St. Clair River are Dow Chemical Company effluents and, to a lesser degree, Sarnia’s Township ditch which drains one of Dow’s waste disposal sites. Tributaries entering the river on both sides of the Canada/United States border contain measurable concentrations of these chemicals indicating low level contamination throughout the area. The degree of water/suspended sediment partitioning of the chemicals (Kp) was studied. Kp values for the individual chemicals changed in a manner consistent with changes in their physical-chemical properties.


2020 ◽  
Vol 20 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Ponnurengam M. Sivakumar ◽  
Matin Islami ◽  
Ali Zarrabi ◽  
Arezoo Khosravi ◽  
Shohreh Peimanfard

Background and objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. Methods and results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.


2021 ◽  
Vol 11 (10) ◽  
pp. 4417
Author(s):  
Veronica Vendramin ◽  
Gaia Spinato ◽  
Simone Vincenzi

Chitosan is a chitin-derived fiber, extracted from the shellfish shells, a by-product of the fish industry, or from fungi grown in bioreactors. In oenology, it is used for the control of Brettanomyces spp., for the prevention of ferric, copper, and protein casse and for clarification. The International Organisation of Vine and Wine established the exclusive utilization of fungal chitosan to avoid the eventuality of allergic reactions. This work focuses on the differences between two chitosan categories, fungal and animal chitosan, characterizing several samples in terms of chitin content and degree of deacetylation. In addition, different acids were used to dissolve chitosans, and their effect on viscosity and on the efficacy in wine clarification were observed. The results demonstrated that even if fungal and animal chitosans shared similar chemical properties (deacetylation degree and chitin content), they showed different viscosity depending on their molecular weight but also on the acid used to dissolve them. A significant difference was discovered on their fining properties, as animal chitosans showed a faster and greater sedimentation compared to the fungal ones, independently from the acid used for their dissolution. This suggests that physical–chemical differences in the molecular structure occur between the two chitosan categories and that this significantly affects their technologic (oenological) properties.


Sign in / Sign up

Export Citation Format

Share Document