Transmittance change with thickness for polycrystalline VO2 films deposited at room temperature

2019 ◽  
Vol 791 ◽  
pp. 648-654 ◽  
Author(s):  
Yan Yang ◽  
Xun Cao ◽  
Guangyao Sun ◽  
Shiwei Long ◽  
Tianci Chang ◽  
...  
Coatings ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 87 ◽  
Author(s):  
Jui-Yang Chang ◽  
Ying-Chung Chen ◽  
Chih-Ming Wang ◽  
You-Wei Chen

In this study: various amounts of Li2CO3 powders were mixed into NiO powders to fabricate the Li- added NiO (NiO:Li) targets. The electrochromic films of LiNiO were deposited on ITO glasses at room temperature (R.T.) by RF magnetron sputtering. The thicknesses of electrochromic LiNiO films were kept about 200 nm. The ECD device was constructed with structure of Glass/ITO/ LiNiO /Gel-electrolyte/ITO/Glass. The results indicated that the optimal electrochromic characteristics of Li0.16Ni0.58O thin films could be obtained by 10 wt% Li2CO3 added NiO target. The optimized characteristics of ECDs could be achieved with the intercalation charge (Q) of 11.93 mC/cm2, the optical density (ΔOD) of 0.38, the transmittance change (ΔT) of 44.1%, and the coloring efficiency (η) of 31.8 cm2/C at the wavelength of 550 nm by setting voltage of 3.2V. The results demonstrate that the doping of Li+ ions into NiO films can effectively enhance the characteristics of ECD devices. The reason may due to the increased amount of charge stored in the electrochromic devices (ECDs).


Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 191 ◽  
Author(s):  
Jui-Yang Chang ◽  
Ying-Chung Chen ◽  
Chih-Ming Wang ◽  
Wen-Nan Wang ◽  
Chih-Yu Wen ◽  
...  

In this study, xLi2O-(1−x)WO3 powders were mixed with WO3 and Li2O and pressed into target pellets to fabricate electrochromic films on indium tin oxide (ITO) glasses prepared by electron beam evaporation under the parameters of room temperature, and thicknesses of about 530 nm. It was expected that the amount of charge stored in the electrochromic devices (ECDs) could be enhanced by using the doping method in the cathode materials. The experimental results show that as the composition of Li0.18W0.82O2.6 powder was formed, the optimal characteristics of ECD can be obtained. In which, as a voltage of 3.5 V was applied on ECD, a transmittance change (ΔT%) of 53.1%, an optical density (ΔOD) of 0.502, an intercalation charge (Q) of 12.9 mC/cm2 and a coloration efficiency (η) of 41.6 cm2/C at a wavelength of 550 nm can be achieved. These results demonstrate that Li2O doping in WO3 films could effectively improve the coloration and electrochromic properties of ECD devices.


Author(s):  
J. E. Doherty ◽  
A. F. Giamei ◽  
B. H. Kear ◽  
C. W. Steinke

Recently we have been investigating a class of nickel-base superalloys which possess substantial room temperature ductility. This improvement in ductility is directly related to improvements in grain boundary strength due to increased boundary cohesion through control of detrimental impurities and improved boundary shear strength by controlled grain boundary micros true tures.For these investigations an experimental nickel-base superalloy was doped with different levels of sulphur impurity. The micros tructure after a heat treatment of 1360°C for 2 hr, 1200°C for 16 hr consists of coherent precipitates of γ’ Ni3(Al,X) in a nickel solid solution matrix.


Author(s):  
J. N. Turner ◽  
D. N. Collins

A fire involving an electric service transformer and its cooling fluid, a mixture of PCBs and chlorinated benzenes, contaminated an office building with a fine soot. Chemical analysis showed PCDDs and PCDFs including the highly toxic tetra isomers. Guinea pigs were chosen as an experimental animal to test the soot's toxicity because of their sensitivity to these compounds, and the liver was examined because it is a target organ. The soot was suspended in 0.75% methyl cellulose and administered in a single dose by gavage at levels of 1,10,100, and 500mgm soot/kgm body weight. Each dose group was composed of 6 males and 6 females. Control groups included 12 (6 male, 6 female) animals fed activated carbon in methyl cellulose, 6 males fed methyl cellulose, and 16 males and 10 females untreated. The guinea pigs were sacrificed at 42 days by suffocation in CO2. Liver samples were immediately immersed and minced in 2% gluteraldehyde in cacadylate buffer at pH 7.4 and 4°C. After overnight fixation, samples were postfixed in 1% OsO4 in cacodylate for 1 hr at room temperature, embedded in epon, sectioned and stained with uranyl acetate and lead citrate.


Author(s):  
Joseph J. Comer

Domains visible by transmission electron microscopy, believed to be Dauphiné inversion twins, were found in some specimens of synthetic quartz heated to 680°C and cooled to room temperature. With the electron beam close to parallel to the [0001] direction the domain boundaries appeared as straight lines normal to <100> and <410> or <510> directions. In the selected area diffraction mode, a shift of the Kikuchi lines was observed when the electron beam was made to traverse the specimen across a boundary. This shift indicates a change in orientation which accounts for the visibility of the domain by diffraction contrast when the specimen is tilted. Upon exposure to a 100 KV electron beam with a flux of 5x 1018 electrons/cm2sec the boundaries are rapidly decorated by radiation damage centers appearing as black spots. Similar crystallographio boundaries were sometimes found in unannealed (0001) quartz damaged by electrons.


Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


Author(s):  
K. A. Fisher ◽  
M. G. L. Gustafsson ◽  
M. B. Shattuck ◽  
J. Clarke

The atomic force microscope (AFM) is capable of imaging electrically conductive and non-conductive surfaces at atomic resolution. When used to image biological samples, however, lateral resolution is often limited to nanometer levels, due primarily to AFM tip/sample interactions. Several approaches to immobilize and stabilize soft or flexible molecules for AFM have been examined, notably, tethering coating, and freezing. Although each approach has its advantages and disadvantages, rapid freezing techniques have the special advantage of avoiding chemical perturbation, and minimizing physical disruption of the sample. Scanning with an AFM at cryogenic temperatures has the potential to image frozen biomolecules at high resolution. We have constructed a force microscope capable of operating immersed in liquid n-pentane and have tested its performance at room temperature with carbon and metal-coated samples, and at 143° K with uncoated ferritin and purple membrane (PM).


Author(s):  
A. C. Faberge

Benzylamine tartrate (m.p. 63°C) seems to be a better and more convenient substrate for making carbon films than any of those previously proposed. Using it in the manner described, it is easy consistently to make batches of specimen grids as open as 200 mesh with no broken squares, and without individual handling of the grids. Benzylamine tartrate (hereafter called B.T.) is a viscous liquid when molten, which sets to a glass. Unlike polymeric substrates it does not swell before dissolving; such swelling of the substrate seems to be a principal cause of breakage of carbon film. Mass spectroscopic examination indicates a vapor pressure less than 10−9 Torr at room temperature.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Sign in / Sign up

Export Citation Format

Share Document