The use of waste, fine-grained carbonaceous material in the process of copper slag reduction

2021 ◽  
Vol 288 ◽  
pp. 125640
Author(s):  
Jerzy Łabaj ◽  
Leszek Blacha ◽  
Maciej Jodkowski ◽  
Albert Smalcerz ◽  
Mária Fröhlichová ◽  
...  
2015 ◽  
Vol 11 (A29B) ◽  
pp. 426-426
Author(s):  
Scott Messenger ◽  
K. Nakamura-Messenger

AbstractInterplanetary dust particles (IDPs) collected in the Earths stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01-1% of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present an overview of the current state of understanding of the properties and origins of organic matter in primitive IDPs.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Tommi Rinne ◽  
Anna Klemettinen ◽  
Lassi Klemettinen ◽  
Ronja Ruismäki ◽  
Hugh O’Brien ◽  
...  

In this study, industrial lithium-ion battery (LIB) waste was treated by a froth flotation process, which allowed selective separation of electrode particles from metallic-rich fractions containing Cu and Al. In the flotation experiments, recovery rates of ~80 and 98.8% for the cathode active elements (Co, Ni, Mn) and graphite were achieved, respectively. The recovered metals from the flotation fraction were subsequently used in high-temperature Cu-slag reduction. In this manner, the possibility of using metallothermic reduction for Cu-slag reduction using Al-wires from LIB waste as the main reductant was studied. The behavior of valuable (Cu, Ni, Co, Li) and hazardous metals (Zn, As, Sb, Pb), as a function of time as well as the influence of Cu-slag-to-spent battery (SB) ratio, were investigated. The results showcase a suitable process to recover copper from spent batteries and industrial Cu-slag. Cu-concentration decreased to approximately 0.3 wt.% after 60 min reduction time in all samples where Cu/Al-rich LIB waste fraction was added. It was also showed that aluminothermic reduction is effective for removing hazardous metals from the slag. The proposed process is also capable of recovering Cu, Co, and Ni from both Cu-slag and LIB waste, resulting in a secondary Cu slag that can be used in various applications.


2015 ◽  
Vol 51 (1) ◽  
pp. 41-48 ◽  
Author(s):  
J. Jansson ◽  
P. Taskinen ◽  
M. Kaskiala

The initial growth rate of freeze linings on water-cooled elements submerged in molten iron silicate slag is fast. The freeze lining microstructure forming on water cooled steel surface in a high-silica, slag cleaning furnace slag of a direct-to-blister copper smelter is mostly glassy or amorphous. It contains 5-30 ?m magnetite crystals, very small and larger copper droplets as well as small magnetite and silicate nuclei embedded in the glassy silica-rich matrix. Chemically the formed freeze linings are more silica-rich than the slag from which they were generated. Magnetite (spinel) is the primary phase of the solidifying SCF slag but it does not form a continuous network through the freeze lining. Its strength is given by the intergranular silica-rich phase which initially is glassy or microcrystalline. Due to only partial slag reduction in the SCF process, large magnetite crystals are present in the freeze lining and seem to interact physically with copper droplets.


2021 ◽  
Vol 43 (2) ◽  
pp. 29-39
Author(s):  
V.P. SEMENENKO ◽  
A.L. GIRICH ◽  
K.O. SHKURENKO ◽  
N.V. KYCHAN

The results of structural, mineralogical and chemical study of rare structural units of chondrites, macrochondrules and their fragments, found in five chondrites of different chemical groups and petrological types (Allende CV3, Krymka LL3.1, Saratov L4, "Velyka Balka" L4-5, Château-Renard L6), are given. Most of them are generally similar to ordinary chondrules and previously studied macrochondrules. They have a radial and porphyritic texture, consist of olivine and pyroxene, and are covered by a silicate rim, which is fine-grained in the macrochondrules of unequilibrated chondrites and coarse-grained in equilibrated ones. Only two macrochondrules among studied one’s are extraordinary and indicate specific conditions for their formation in the protoplanetary nebula. The first one, separated directly from the Allende chondrite, is characterized by the presence of a thin amorphous shell with a porous structure and with unambiguous sculpture features of instantaneous melting and solidification of its surface silicate layer. The second one, studied in a polished section of the Krymka meteorite, is characterized by a zonal structure and the presence of graphite grains and possibly bitumen inclusions. According to the SiO2/MgO ratio, its fine-grained silicate rim with rare graphite crystals and possibly bitumen inclusions corresponds to the fine-grained rims of ordinary chondrules, but is different from the carbonaceous material of meteorites.


2015 ◽  
Vol 22 (5) ◽  
pp. 396-401 ◽  
Author(s):  
Jun Zhang ◽  
Yuan-hong Qi ◽  
Ding-liu Yan ◽  
Hai-chuan Xu

2021 ◽  
Vol 9 ◽  
Author(s):  
Zongliang Zuo ◽  
Yan Feng ◽  
Siyi Luo ◽  
Xinjiang Dong ◽  
Xiaoteng Li ◽  
...  

Copper slag is a solid pollutant with high recyclability. Reduction and separation are regarded as effective disposal methods. However, during the melting process, the separation and migration behavior of elements in the copper slag is complicated. Thus, the formation of pollutants cannot be controlled merely by optimizing the operation parameters. The elemental distribution and migration behavior are discussed in this work. In reduction experiments, the copper slag smelting liquid was divided into three layers: a reduction slag layer, a reactive boundary layer, and an iron ingot layer. Reduction slag and ingot iron were on the top and bottom of the liquid, respectively. Residual carbon oozed at the interface. C can react with reducible “O” atoms, which exist in 2FeO·SiO2, Fe3O4, and CuO. Meanwhile, CO was generated and overflowed from the liquid layer. After reduction by C or CO, metallic iron and copper were produced and migrated to the iron ingot layer. In the liquid, S gradually diffused into the upper layer. Some of the ZnO and CuS spilled from the liquid into the flume. After reduction, CaO·SiO2 was generated and moved to the upper layer.


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 94 ◽  
Author(s):  
Ekaterina Fomina ◽  
Evgeniy Kozlov ◽  
Kirill Lokhov ◽  
Olga Lokhova ◽  
Vladimir Bocharov

The Precambrian rocks of the Keivy Terrane reveal five types of carbonaceous matter (CM): Fine-grained, flaky, nest, vein, and spherulitic. These types differ in their distribution character, carbon isotope composition, and graphitization temperatures calculated by the Raman spectra of carbonaceous material (RSCM) geothermometry. Supracrustal rocks of the Keivy Terrane contain extremely isotopically light (δ13CPDB = –43 ± 3‰) carbon. Presumably, its source was a methane–aqueous fluid. According to temperature calculations, this carbon matter and the host strata underwent at least two stages of metamorphism in the west of the Keivy Terrane and one stage in the east. The CM isotope signatures of several samples of kyanite schists (δ13CPDB = –33 ± 5‰) are close to those of oils and oil source rocks, and they indicate an additional carbon reservoir. Thus, in the Keivy territory, an oil-and-gas bearing basin has existed. Heavy carbon (δ13CPDB = −8 ± 3‰) precipitated from an aqueous CO2-rich fluid is derived from either the lower crust or the mantle. This fluid probably migrated from the Keivy alkaline granites into the surrounding rocks previously enriched with “methanogenic” carbon.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 973
Author(s):  
Hanquan Zhang ◽  
Chaojie Hu ◽  
Wangjie Gao ◽  
Manman Lu

The Fe3O4 and Fe2SiO4 in copper slag were successfully reduced to metallic iron by coal-based direct reduction. Under the best reduction conditions of 1300 °C reduction temperature, 30 min reduction time, 35 wt.% coal dosage, and 20 wt.% CaO dosage (0.75 binary basicity), the Fe grade of obtained iron concentration achieved 91.55%, and the Fe recovery was 98.13%. The kinetic studies on reduction indicated that the reduction of copper slag was controlled by the interfacial reaction and carbon gasification at 1050 °C. When at a higher reduction temperature, the copper slag reduction was controlled by the diffusion of the gas. The integral kinetics model research illustrated that the reaction activation energy increased as the reduction of copper slag proceeded. The early reduction of Fe3O4 needed a low reaction activation energy. The subsequent reduction of Fe2SiO4 needed higher reaction activation energy compared with that of Fe3O4 reduction.


2002 ◽  
Vol 12 ◽  
pp. 34-37 ◽  
Author(s):  
John P. Bradley

AbstractInterplanetary dust particles (IDPs) are from asteroids and comets, and they are the smallest and most fine-grained meteoritic objects available for laboratory investigation. Cometary IDPs are of special significance because they are presently the only samples of comets, and comets are expected to be enriched in preserved solar nebula and presolar components. These components may include not only cosmically rare refractory circumstellar grains(e.g. SiC) that are recovered from meteorites but also cosmically abundant interstellar silicates and carbonaceous grains that were the fundamental building blocks of the Solar System. D/H ratios measured in IDPs are consistent with the survival of interstellar carbonaceous material, and some IDPs contain glassy grains with properties similar to those of interstellar “amorphous silicates”. Submicrometer forsterite and enstatite crystals in IDPs resemble circumstellar silicates detected by the Infrared Space Observatory (ISO). ISO also detected a broad ~ 23 µm feature around several stars, and a similar feature observed in IDP spectra is due to submicrometer FeNi sulfide grains, suggesting that sulfide grains may be a significant constituent of astronomical dust.


1991 ◽  
Vol 126 ◽  
pp. 63-70
Author(s):  
J. P. Bradley

AbstractThe fine grained mineralogy and petrography of anhydrous “pyroxene” and “olivine” classes of chondritic interplanetary dust have been investigated by numerous electron microscopic studies. The “pyroxene” interplanetary dust particles (IDPs) are porous, unequilibrated assemblages of mineral grains, metal, glass, and carbonaceous material. They contain enstatite whiskers, FeNi carbides, and high-Mn olivines and pyroxenes, all of which are likely to be well preserved products of nebular gas reactions. Solar flare tracks are prominent in most “pyroxene” IDPs, indicating that they were not strongly heated during atmospheric entry. The “olivine” IDPs are coarse grained, equilibrated mineral assemblages that have probably experienced strong heating. Since most “olivine” IDPs do not contain tracks, it is possible that this heating occurred during atmospheric entry.


Sign in / Sign up

Export Citation Format

Share Document