Mass-Production of High-Yield and High-Strength Thermomechanical Pulp Fibers from Plant Residues Enabled by Ozone Pretreatment

2021 ◽  
pp. 126575
Author(s):  
Jianming Liao ◽  
Shuaiming He ◽  
Lihuan Mo ◽  
Shasha Guo ◽  
Pengcheng Luan ◽  
...  
2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Tove Joelsson ◽  
Anna Svedberg ◽  
Sven Norgren ◽  
Gunilla Pettersson ◽  
Jan-Erik Berg ◽  
...  

AbstractThe dry strength properties of hot-pressed moist paper improved as stiff high-yield pulp fibers soften and the sheet density increased. Very high wet strength was also achieved without adding strengthening agents. This research focuses on a new hot-pressing methodology based on a steel belt-based pilot cylinder press with infrared heating. The heated steel belt transports the moist paper into the cylinder nip with two adjacent steel rollers with adjustable nip pressure. The temperature ranges up to 300 °C, maximum speed is 5 m/min, maximum pulling force from the steel belt is 70 kN and the line load in the two press nips is 15 kN/m each. High peak pressures are possible due to the hard press nip between steel rolls and steel belt, allowing a good heat transfer to the paper. The long dwell time allows strained drying of the paper which results to high density and high wet strength. Paper samples from high-yield pulps were tested at different nip pressures, temperatures and machine speeds while the dry content was kept constant at about 63%. High nip pressure showed the largest effect on densification and dry strength. While high temperature and long dwell time seem to be most important in achieving high wet strength.


Author(s):  
Kiyoshi Ebihara ◽  
Shinya Sakamoto ◽  
Takuya Hara ◽  
Nobuhiko Mamada ◽  
Toshihiko Adachi

This paper describes metallurgical design concept and mass production result of heavy plates for Bovanenkovo-Ukhta (Yamal-Europe) Gas Pipeline project. The metallurgical design concept was taken as (1) a dual phase microstructure consisting of fine dispersed ferrite and bainite for high strength and high toughness, (2) control of accelerated cooling stop temperature for achieving high yield strength (YS). In the mass production, the narrow range of strength and elongation and excellent low temperature toughness was achieved (CVN energy at −40°C, and DWTT shear area at −20°C).


2020 ◽  
Vol 35 (2) ◽  
pp. 195-204
Author(s):  
Tove Joelsson ◽  
Gunilla Pettersson ◽  
Sven Norgren ◽  
Anna Svedberg ◽  
Hans Höglund ◽  
...  

AbstractThe hypothesis is that it should be possible to modify papermaking conditions in line with the softening properties of high yield pulp fibres and achieve similar strength properties to conventional chemical pulp based paper. We therefore investigated the rheological and physical properties of high yield pulp based papers during hot-pressing. Our results confirm that increased temperature combined with sufficient pressure enables permanent densification by softening of lignin, producing very high tensile strength. This treatment also significantly improved the wet tensile strength in comparison to bleached kraft pulp without using wet strength agents. The high yield pulps used here were spruce based thermomechanical pulp, chemi-thermomechanical pulp, and high temperature chemi-thermomechanical pulp, and birch-aspen based neutral sulphite semi chemical pulp, with spruce-pine based bleached kraft pulp as reference. Rapid Köhten sheets of 150\hspace{0.1667em}\text{g}/{\text{m}^{2}} and 50 % dryness were hot-pressed in a cylinder-press at 20–200 °C, 7 MPa, and 1 m/min. The mechanical properties showed great improvements in these high yield pulp papers, with tensile index increased to 75 kNm/kg and compression strength index to 45 kNm/kg; levels close to and better than bleached kraft. Wet strength increased to 16 Nm/g compared to 5 Nm/g for bleached kraft.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 15-21 ◽  
Author(s):  
JI-YOUNG LEE ◽  
CHUL-HWAN KIM ◽  
JEONG-MIN SEO ◽  
HO-KYUNG CHUNG ◽  
KYUNG-KIL BACK ◽  
...  

Eco-friendly cushioning materials were made with thermomechanical pulps (TMPs) from waste woods collected from local mountains in Korea, using a suction-forming method without physical pressing. The TMP cushions had superior shock-absorbing performance, with lower elastic moduli than expanded polystyrene (EPS) or molded pulp. Even though the TMP cushions made using various suction times had many voids in their inner fiber structure, their apparent densities were a little higher than that of EPS and much lower than that of molded pulp. The addition of cationic starch contributed to an increase in the elastic modulus of the TMP cushions without increasing the apparent density, an effect which was different from that of surface sizing with starch. In the impact test, the TMP cushions showed a more ductile pattern than the brittle EPS. The porosity of the TMP cushion was a little less than that of EPS and much greater than that of molded pulp. The porous structure of the TMP cushions contributed to their excellent thermal insulating capacity, which was equivalent to that of EPS. In summary, the TMP packing cushions showed great potential for surviving external impacts during product distribution.


Alloy Digest ◽  
1967 ◽  
Vol 16 (1) ◽  

Abstract Republic 50 is a high-strength low-alloy structural steel recommended where high yield strength and toughness combined with good weldability and corrosion resistance are required. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive, shear, and bend strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-205. Producer or source: Republic Steel Corporation.


2021 ◽  
Vol 13 (6) ◽  
pp. 3482
Author(s):  
Seoungho Cho ◽  
Myungkwan Lim ◽  
Changhee Lee

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.


2011 ◽  
Vol 33 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Yicheng Du ◽  
Ning Yan ◽  
Mark T. Kortschot

Sign in / Sign up

Export Citation Format

Share Document