The electro-Fenton Regeneration of Granular Activated Carbons: Degradation of Organic Contaminants and the Relationship to the Carbon Surface

2021 ◽  
pp. 125792
Author(s):  
Naomi A. Bury ◽  
Kathryn A. Mumford ◽  
Geoffrey W. Stevens
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lilla Fijołek ◽  
Joanna Świetlik ◽  
Marcin Frankowski

AbstractIn water treatment technology, activated carbons are used primarily as sorbents to remove organic impurities, mainly natural organic matter, but also as catalysts in the ozonation process. Commercially available activated carbons are usually contaminated with mineral substances, classified into two main groups: alkali metals (Ca, Na, K, Li, Mg) and multivalent metals (Al, Fe, Ti, Si). The presence of impurities on the carbon surface significantly affects the pHpzc values determined for raw and ozonated carbon as well as their acidity and alkalinity. The scale of the observed changes strongly depends on the pH of the ozonated system, which is related to the diffusion of impurities from the carbon to the solution. In an acidic environment (pH 2.5 in this work), the ozone molecule is relatively stable, yet active carbon causes its decomposition. This is the first report that indirectly indicates that contaminants on the surface of activated carbon (multivalent elements) contribute to the breakdown of ozone towards radicals, while the process of ozone decomposition by purified carbons does not follow the radical path in bulk solution. Carbon impurities also change the distribution of the reaction products formed by organic pollutants ozonation, which additionally confirms the radical process. The study showed that the use of unpurified activated carbon in the ozonation of succinic acid (SA) leads to the formation of a relatively large amount of oxalic acid (OA), which is a product of radical SA degradation. On the other hand, in solutions with purified carbon, the amount of OA generated is negligible.


2013 ◽  
Vol 807-809 ◽  
pp. 549-552 ◽  
Author(s):  
Chen Lu Zhao ◽  
Wei Qiu Huang ◽  
Ying Xia Wang ◽  
Li Shi

Dynamic and thermodynamic characteristics of gasoline vapor adsorption at 0.3 mol/mol on different activated carbons (ACs) were investigated. The adsorption capacities of AC1 and AC3 were 0.295 g/g and 0.189 g/g at 20 oC, and 0.284 g/g and 0.165 g/g at 30 °C, respectively. Bed temperature rise was up to 50°C to 60°C in the adsorption of gasoline vapor at 0.3 mol/mol.The heat effect formula for high concentration vapor adsorption was deduced to evaluate the relationship of the adsorption capacity of the activated carbons, the mole fraction of the inlet gasoline vapor, the recovery efficiency of the gasoline vapor with the temperature rise.


Author(s):  
Sharmin Akter ◽  
Ferdousi Sultana ◽  
Md. Rakibul Kabir ◽  
Partha Pratim Brahma ◽  
Atkeeya Tasneem ◽  
...  

Pharmaceutical industries in Bangladesh are considered as one major industrial as well as environmental pollution problems which discharge a significant amount of organic contaminants in the environment hence require advanced treatment technologies to decontaminate pharmaceutical wastewater. In the present investigation, areca nut husk treated activated carbon (ANHC) was used as an adsorbent to remove chemical oxygen demand (COD) from pharmaceutical effluent as well as a comparative adsorption efficiency with commercial activated carbon (CAC) was performed.  The batch experiments were carried out in a laboratory scale. The materials also evaluated for different adsorbent dosages and contact times. The experiment revealed a removal percentage up to 70% for ANHC and 90% for CAC for 3g of adsorbents in 180 min. The adsorption processes were satisfactorily described by pseudo-second-order (PSO) kinetic model which shows a better fitting with the maximum regression coefficient for both adsorbents. The results show that Langmuir model best described the experimental data with a highest correlation coefficient (R2=0.9856 for ANHC and 0.9993 for CAC) compared to Freundlich model and the experimental data showed asorption capacity of 36.549 and 64.935 mg/g for ANHC and CAC, correspondingly. According to the adsorption studies, the results revealed that COD adsorption process followed by the monolayer chemisorption mechanisms. The results revealed that ANHC adsorbent is potentially low cost and environmental friendly adsorbent for the removal of organic matter from pharmaceutical effluent.


Author(s):  
Victor Odhiambo Shikuku ◽  
Wilfrida N. Nyairo ◽  
Chrispin O. Kowenje

Biochars have been extensively applied in soil remediation, carbon sequestration, and in climate change mitigation. However, in recent years, there has been a significant increase in biochar research in water treatment due to their stupendous adsorptive properties for various contaminants. This is attributed to their large surface areas, pore structures, chemical compositions, and low capital costs involved making them suitable candidates for replacing activated carbons. This chapter discusses the preparation methods and properties of biochars and their removal efficacy for organic contaminants and microbial control. Factors affecting adsorption and the mechanisms of adsorption of organic pollutants on biochars are also concisely discussed. Biochars present environmentally benign and low-cost adsorbents for removal of both organic pollutants and microbial control for wastewater purification systems.


2013 ◽  
Vol 1505 ◽  
Author(s):  
Krzysztof Fic ◽  
Mikolaj Meller ◽  
Grzegorz Lota ◽  
Elzbieta Frackowiak

ABSTRACTThe main subject of this paper is to examine and to evaluate the capacitive behaviour of activated carbon electrodes electrochemically decorated by quinone-type functional groups. For this purpose, different electrolytes, i.e. hydroquinone, catechol and resorcinol at the concentration of 0.38 mol L-1, dissolved in 1 mol L-1 H2SO4, 1 mol L-1 Li2SO4 and 6 mol L-1 KOH were used. These electrolytes could generate electroactive groups (able to undergo reversible redox reactions) on the surface of electrode material. Apart from typical adsorption of the mentioned dihydroxybenzenes, so called grafting could occur and might cause generation of quinone|hydroquinone functionals on carbon surface. As an effect of functional reversible redox reaction, additional capacitance value, called pseudocapacitance, could be achieved. Hence, besides typical charge originating from charging/discharging of the electrical double layer on the electrode/electrolyte interface, additional capacitance comes also from faradaic reactions. Activated carbons are the most promising electrode materials for this purpose; apart from great physicochemical properties, they are characterized by well-developed specific surface area over 2000 m2 g-1 which results in high capacitance values.In the manuscript the influence of the hydroxyl group location as well as electrolyte solution pH on the electrochemical performance of the electrode is discussed.


1997 ◽  
Vol 15 (10) ◽  
pp. 803-814 ◽  
Author(s):  
A.M. Youssef ◽  
M.R. Mostafa ◽  
E.M. Dorgham

Zinc chloride-activated carbons and steam-activated carbons were prepared from Maghara coal. The textural properties were determined from low-temperature nitrogen adsorption. Zinc chloride activation is usually associated with the creation of new micropores while steam activation involves pore widening particularly when the percentage burn-off is high. The adsorption of SO2 on steam-activated carbon is high compared with ZnCl2-activated carbons. Steam activation develops surface basic groups which provide chemisorption sites for SO2. The adsorption of SO2 is enhanced in the presence of O2 and water vapour and involves the formation of sulphuric acid in this case. Sulphur dioxide adsorption is related to the chemistry of the carbon surface rather than to the extent of the surface area of the activated carbon.


2013 ◽  
Vol 16 (3) ◽  
pp. 189-195
Author(s):  
M. A. Torre ◽  
C. Del Río ◽  
E. Morales

Supercapacitors have attracted great attention in power source applications, due to their high power density, elevated charge/discharge rate, good reversibility and long life. Activated carbons are the most frequently used electrode material, due to their high accessibility, non-toxicity, high chemical stability, good electrical conductivity, high surface area and low cost, but in practice the capacitance values are limited by the material microstructure. In this work we report on the synthesis and electrochemical characterization of carbon/polyaniline composites, synthesized by in-situ polymerization in acid media of aniline monomer on the surface of two activated carbons having different textural properties, and on the effect of the carbon porosity on the electrochemical properties of the electrodes. Results obtained indicate that the BET specific surface of the composites decreases sharply due to the collapse of the porous structure (mainly the micropores) of the carbon by the polyaniline chains. Regarding capacitance values, Csp increases on increasing polyaniline loading in the composite, however high polymer concentration lead to a decrease on capacitance when high current were applied, probably due to diffusion restrictions of the electrolyte anions and cations to the carbon surface.


2019 ◽  
Vol 26 (01) ◽  
pp. 1830006 ◽  
Author(s):  
MATHEUS PEGO ◽  
JANAÍNA CARVALHO ◽  
DAVID GUEDES

The main and new surface modification methods of activated carbon (AC) and their influence on application (adsorption capacity) were reviewed. Adsorption capacity is an important issue, contributing to hazardous substances environment management. According to literature, it is true that surface chemistry strongly affects adsorption capacity. Surface chemistry can be modified by several methods that lead to different activated carbon properties. Furthermore, adsorbate properties, and their relationships with surface structure, can impact adsorption properties. Surface modifications can be conducted by adding some atoms to the surface structure, making the surface more acidic or basic. Introduction of oxygen and ammonia atoms (chemical modification) are the main processes to make the surface more acidic and basic, respectively, although may bring chemical wastes to environment. Surface modification is done by chemical and physical modifications that lead activated carbons to present different properties. The main and new methods of chemical and physical modifications are compared and presented in this paper. Some new physical methods, like corona treatment, plasma discharge and microwave radiation, can be applied to cause surface modifications. Corona treatment can be a practical and new way to cause surface modification on an activated carbon surface.


Sign in / Sign up

Export Citation Format

Share Document