Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: Experiments and modeling

2013 ◽  
Vol 499 ◽  
pp. 316-323 ◽  
Author(s):  
Congrong Yu ◽  
Rafael Muñoz-Carpena ◽  
Bin Gao ◽  
Oscar Perez-Ovilla
2013 ◽  
Vol 481 ◽  
pp. 72-75
Author(s):  
O. Nooririnah ◽  
Azwar Azhari Muhamad ◽  
Y. Yusliza ◽  
Abreeza Manap ◽  
M.J. Md Ashadi

The precipitated of calcium carbonate has attractedmuch attention because of its numerous applications in various areas of plastics, textiles, rubbers, adhesives, paints and wastewater treatment. Nanosized of precipitated calcium carbonate,(PCC) will enhance the properties and give better performance. Its high purity and close controlled particle size and shape are making it the white filler of choice. Nanosized precipitated calcium carbonate particles were prepared using spraying method. The particles were prepared using three (3) different concentrations of Calcium Hydroxide,Ca (OH)2, three (3) CO2flow rate and three (3) different calcinations temperature. The three (3) concentration of Calcium Hydroxide that been used are 25g/200ml, 25g/ 400ml and 25g/800ml and each of these initial solution sprayed at three (3) different CO2flow rate, 5l/per-minute, 7l/per-minute and 10l/per-minute. Calcium Carbonate, CaCO3powders were then calcined at three (3) different temperature, 1100°C,1200°C and 1300°C. Images from SEM showed morphology of the particles changed to spindle-like or prismatic when the ionic strength of the Calcium Hydroxide, Ca (OH)2was increased.


2018 ◽  
Vol 14 (1) ◽  
pp. 31-60 ◽  
Author(s):  
M. Y. Guida ◽  
F. E. Laghchioua ◽  
A. Hannioui

This article deals with fast pyrolysis of brown algae, such as Bifurcaria Bifurcata at the range of temperature 300–800 °C in a stainless steel tubular reactor. After a literature review on algae and its importance in renewable sector, a case study was done on pyrolysis of brown algae especially, Bifurcaria Bifurcata. The aim was to experimentally investigate how the temperature, the particle size, the nitrogen flow rate (N2) and the heating rate affect bio-oil, bio-char and gaseous products. These parameters were varied in the ranges of 5–50 °C/min, below 0.2–1 mm and 20–200 mL. min–1, respectively. The maximum bio-oil yield of 41.3wt% was obtained at a pyrolysis temperature of 600 °C, particle size between 0.2–0.5 mm, nitrogen flow rate (N2) of 100 mL. min–1 and heating rate of 5 °C/min. Liquid product obtained under the most suitable and optimal condition was characterized by elemental analysis, 1H-NMR, FT-IR and GC-MS. The analysis of bio-oil showed that bio-oil from Bifurcaria Bifurcata could be a potential source of renewable fuel production and value added chemicals.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


Author(s):  
Zuhaili Idham ◽  
Ahmad Syahmi Zaini ◽  
Nicky Rahmana Putra ◽  
Nurfarhain Mohamed Rusli ◽  
Noor Sabariah Mahat ◽  
...  

2021 ◽  
Vol 136 ◽  
pp. 104211
Author(s):  
Song Xu ◽  
L.H. Tong ◽  
Changjie Xu ◽  
Haibin Ding

2015 ◽  
Vol 651-653 ◽  
pp. 830-835
Author(s):  
Shohei Kajikawa ◽  
Riku Sakagami ◽  
Takashi Iizuka

Thermal flow tests were performed on steamed bamboo powder using capillaries that were processed under different conditions in order to investigate the effect of the die surface state on the fluidity of the woody powder. The capillaries were processed by wire-cut electric discharge machining, reaming or drilling, and the arithmetic average roughness (Ra) varied from 0.5 to 2.5 μm. The bamboo powder was first steamed at 200 °C for 20 min, and its particle size was then controlled using different mesh screens. The thermal flow temperature was set at 200 °C. The results indicated that the flow behavior improved with increasing particle size. For the capillaries processed by WEDM, the flow rate for samples with particle sizes of 75~150 and 150~300 μm decreased with increasing Ra. On the other hand, when reaming or drilling was used to process the capillaries, the flow rate was almost independent of Ra, regardless of the particle size.


1998 ◽  
pp. 358-360

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xibin Li ◽  
Zhiqing Zhang ◽  
Jianchao Sheng

An exact solution is proposed to study the time-harmonic torsional vibration of an elastic pile embedded in a radially inhomogeneous saturated soil. The radially inhomogeneous saturated soil is composed of inner disturbed and outer semi-infinite undisturbed concentric annular regions, with the shear modulus of the inner region changing in an exponential form along the radial direction. The governing equation of each region of the saturated soil is solved through rigorous mathematical derivation and the soil torsional impedance is derived with an exact and explicit expression. Making use of the boundary and continuity conditions of the pile-soil system, the torsional complex stiffness at the pile top is obtained in an exact closed form in the frequency domain. Selected numerical results are presented to investigate the influence of the radial inhomogeneity of the surrounding soil on the vibration characteristics of the pile-soil system.


Sign in / Sign up

Export Citation Format

Share Document