Resin adjustment of three-dimensional printed thermoset occlusal splints: Bonding properties – Short communication

Author(s):  
Leila Perea-Lowery ◽  
Pekka K. Vallittu
2015 ◽  
Vol 68 (5) ◽  
pp. 749 ◽  
Author(s):  
Miguel Guerrero ◽  
Lourdes Rivas ◽  
Teresa Calvet ◽  
Mercè Font-Bardia ◽  
Josefina Pons

The present report is on the synthesis of two new 3-imine-3,5-dimethylpyrazole ligands, N-[3-(3,5-dimethyl-1H-pyrazol-1-yl)propylidene]ethylamine (L1) and N-[3-(3,5-dimethyl-1H-pyrazol-1-yl)propylidene]propylamine (L2). These ligands form molecular complexes with the formula [ZnCl2(L)] (L = L1 (1) and L2 (2)) when the reacting with ZnCl2 in a metal (M)/ligand (L) ratio of 1 : 1. These new ZnII complexes have been characterised by elemental analyses, conductivity measurements, mass spectrometry, and infrared, 1H and 13C{1H} NMR spectroscopy techniques. The two crystalline structures of complexes 1 and 2 have been solved by X-ray diffraction methods. Finally, we have studied the self-assembly three-dimensional supramolecular structure through different intra- and intermolecular contacts. The application of these ZnII complexes in supramolecular crystal engineering is interesting due to (1) the easy preparation and the high efficiency of this system and (2) the different bonding properties of the heteroatoms (N-pyrazole vs N-imine) present in the structure of the ligands.


2019 ◽  
Vol 53 (2) ◽  
pp. 143-145
Author(s):  
Vikas Jharwal ◽  
Esha Nagpal ◽  
Kamal Bajaj

As the demand for esthetic orthodontic treatment has gained momentum in the past few years, orthodontists are looking for simple and cost-effective devices for precise lingual bracket placement. This short communication describes a versatile lingual jig that can be fabricated with ease by a clinician, allowing precise lingual bracket positioning.


2015 ◽  
Vol 12 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Do Hyun Jung ◽  
Shalu Agarwal ◽  
Santosh Kumar ◽  
Jae Pil Jung

Soft errors in microelectronics devices, responsible for the malfunction of electronic systems, have become a hot issue for miniaturized and high-density packaging like three-dimensional (3D) packaging. Low alpha solder generates very few α-radiation-caused errors and malfunction in electronic devices compared with regular solder. It can improve performance and reliability of through-Si-via (TSV) packaging, prompting the need to adopt low alpha solder for bumping in TSV packaging. TSV technology has emerged as a popular choice for 3D packaging and chip stacking. In this study, the bonding properties of low alpha solder on Cu-filled TSV were investigated. TSVs were fabricated in a Si wafer by deep reactiveion etching, and Cu was filled in the via by electroplating using the periodic pulse-reverse current waveform. Cu filling in the via was achieved in 4 h without any defects at a cathodic current density of −8 mA/cm2. The LC-3 class of a low alpha solder ball (alpha emission < 0.05 cph/cm2) having a composition of Sn-1.0 wt.% Ag-0.5 wt.% Cu (SAC105) and a diameter of 80 μm was reflowed on the Cu-filled TSV to form the solder bump. High-speed shear test was performed on the bumped low alpha solder ball to assess the shear strength and to investigate the fracture mode. The shear strength of the low alpha solder bump showed a maximum value of 369.63 mN at 1.0 m/s shearing speed and 17.6 μm tip height. The fraction of brittle fracture increased with increasing shearing speed.


2015 ◽  
Vol 21 (1) ◽  
pp. 56-69 ◽  
Author(s):  
M. Jiménez ◽  
L. Romero ◽  
M. Domínguez ◽  
M.M. Espinosa

Purpose – This paper aims to present an optimal prototyping technology for the manufacture of occlusal splints. Design/methodology/approach – To carry out this study, a comparative technique was used to analyze models obtained by different prototyping techniques. Subsequently, further tests were carried out with respect to the manufacturing of splints by means of thermoforming in a vacuum. This involved an analysis of the most important variables such as prototype material, geometric accuracy, surface finish and costs. Findings – It was found that there is a group of prototyping technologies that are suitable for the manufacture of the models used in the thermoforming of correction splints, the most appropriate technologies being based on ink jet printing (IJP-Objet), ultraviolet photo polymerization and fused deposition modelling due to the fact that they offer an optimal relationship between the cost and the quality of the model required for thermoforming. Practical implications – The application of rapid prototyping techniques in medicine makes the production of physical models from three-dimensional medical image processing and their subsequent use in different specialties possible. It also makes preoperative planning processes, the production of prostheses and the preparation of surgical templates possible, thereby offering a higher quality of diagnosis, safer surgery and cost and time savings compared to conventional manufacturing technologies. Originality/value – This paper suggests that there exists a group of prototyping technologies for the manufacture of splints that offer advantages over existing technologies. The results also suggest that, in many cases, the most expensive technology is not the most appropriate: there are other options that provide an optimal model in terms of the cost and the quality needed for thermoforming.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Bengt Sundén ◽  
Gongnan Xie

This short communication addresses a numerical investigation of the thermal behavior of an electronic unit. The unit consists of several parallel planes and on the top and bottom planes heat is generated by a number of electronic chips. The heat is transported by conduction through plastic and copper-invar layers. Finally, the heat is rejected by a forced air stream in the center of the unit. The channel system for the cooling air is designed as an offset strip fin surface. A three-dimensional numerical method based on a thermal resistance or conductance network has been developed. The grid points on the cooling air side are staggered compared to the grid points in the solid materials. Details of the numerical method as well as some temperature distributions on the chip planes are provided.


2019 ◽  
Vol 90 (7-8) ◽  
pp. 925-936 ◽  
Author(s):  
Dandan Guo ◽  
Shuai Wang ◽  
Yuxiang Yin ◽  
Jun Luo ◽  
Chenjie Meng ◽  
...  

The extracellular matrix (ECM), with its multilayer fiber structure, regulates diverse functions including cell proliferation, migration, differentiation and tissue regeneration effects. To mimic and replace the native ECM, the structures and properties of three single-layer fabric substrates including warp/weft-knitted and woven fabrics were analyzed, then two-layer warp/weft-knitted composite fabrics prepared by polyurethane (PU) bonding, and woven composite fabrics prepared by polycaprolactone (PCL)/collagen solution bonding or PU bonding, were studied. After PCL/collagen solution bonding or PU bonding, properties such as pore diameter, air permeability, stress and the contact angle of composite fabrics decreased by some degree, while fiber diameter, thickness and the thermal conductivity of composite fabrics increased. In combination with fiber diameter, pore diameter and physical properties, we know that warp- or weft-knitted composite fabrics are ideal scaffolda for potential applications in nerve, myocardium and tendon tissue engineering.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095857
Author(s):  
Woong Ki Jang ◽  
Yoo Su Kang ◽  
Young Ho Seo ◽  
Byeong Hee Kim

This study proposes a method to improve the manufacturing process of a surface anchor structure for the injection molding along with bonding properties of the plating layer for antennas, which can be applied to the Laser Direct Plating (LDP) process for the production of a three-dimensional antenna integrated with a mobile device case. By adjusting parameters such as the output of the laser processing, scanning speed, and pulse recurrence frequency, a micro anchor structure was developed on the surface of the injection mold. The measurement of the surface roughness using a 3D surface profiler showed that the roughness improved by approximately 3.6 times, from 0.96 to 3.24 µm. In addition, the zigzag arrangement of the micro anchor structure was improved by 1.2 times compared to the even arrangement. Furthermore, if the micro anchor structure contained a wall after laser processing, the bonding strength of the plating solution was 69%; with no wall, it was 94% or higher. Thus, the existence of walls resulted in a difference of 1.4 times in the bonding strength. The laser processing improved the bonding strength of the plating solution on the micro anchor structure by approximately 19 times.


Author(s):  
Henning Buddenbaum ◽  
Markus Steffens

An imaging spectrometer in a laboratory rack was used to examine soil profiles. Images in the 400–1000 nm range with 4nm spectral resolution and less than 0.1mm spatial resolution of the top 30cm of the soil were acquired. These images can be used to analyse the spatial distribution of chemical and physical soil characteristics and for discrimination and classification of horizons and inclusions. Three-dimensional characterisations of soil properties are possible by recording images of series of parallel slices.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yaqin Tian ◽  
Qingxue Huang

Three-dimensional model of bimetallic bush was established including the drive roller and the core roller. The model adopted the appropriate interface assumptions. Based on the bonding properties of bimetallic bush the hot rolling process was analyzed. The optimum reduction ratio of 28% is obtained by using the finite element simulation software MARC on the assumption of the bonding conditions. The stress-strain distribution of three dimensions was research assumptions to interface deformation of rolling. At the same time, based on the numerical simulation, the minimum reduction ratio 20% is obtained by using a double metal composite bush rolling new technology from the experiment research. The simulation error is not more than 8%.


Sign in / Sign up

Export Citation Format

Share Document