scholarly journals Biomass ashes to produce an alternative alkaline activator for alkali-activated cements

2021 ◽  
pp. 131198
Author(s):  
L. Soriano ◽  
A. Font ◽  
M.V. Borrachero ◽  
J.M. Monzó ◽  
J. Payá ◽  
...  
2021 ◽  
Vol 11 (9) ◽  
pp. 3840 ◽  
Author(s):  
Alex Maldonado-Alameda ◽  
Jofre Mañosa ◽  
Jessica Giro-Paloma ◽  
Joan Formosa ◽  
Josep Maria Chimenos

Alkali-activated binders (AABs) stand out as a promising alternative to replace ordinary Portland cement (OPC) due to the possibility of using by-products and wastes in their manufacturing. This paper assessed the potential of weathered bottom ash (WBA) from waste-to-energy plants and PAVAL® (PV), a secondary aluminium recycling process by-product, as precursors of AABs. WBA and PV were mixed at weight ratios of 98/2, 95/5, and 90/10. A mixture of waterglass (WG) and NaOH at different concentrations (4 and 6 M) was used as the alkaline activator solution. The effects of increasing NaOH concentration and PV content were evaluated. Alkali-activated WBA/PV (AA-WBA/PV) binders were obtained. Selective chemical extractions and physicochemical characterization revealed the formation of C-S-H, C-A-S-H, and (N,C)-A-S-H gels. Increasing the NaOH concentration and PV content increased porosity and reduced compressive strength (25.63 to 12.07 MPa). The leaching potential of As and Sb from AA-WBA/PV exceeded the threshold for acceptance in landfills for non-hazardous waste.


2021 ◽  
Vol 11 (13) ◽  
pp. 5887
Author(s):  
Thandiwe Sithole ◽  
Nelson Tsotetsi ◽  
Tebogo Mashifana

Utilisation of industrial waste-based material to develop a novel binding material as an alternative to Ordinary Portland Cement (OPC) has attracted growing attention recently to reduce or eliminate the environmental footprint associated with OPC. This paper presents an experimental study on the synthesis and evaluation of alkali activated Ground granulated blast furnace slag (GGBFS) composite using a NaOH solution as an alkaline activator without addition of silicate solution. Different NaOH concentrations were used to produce varied GGBFS based alkali activated composites that were evaluated for Uncofined Compressive Strength (UCS), durability, leachability, and microstructural performance. Alkali activated GGBFS composite prepared with 15 M NaOH solution at 15% L/S ratio achieved a UCS of 61.43 MPa cured for 90 days at ambient temperatures. The microstructural results revealed the formation of zeolites, with dense and non-porous morphology. Alkali activated GGBFS based composites can be synthesized using a sole alkaline activator with potential to reduce CO2 emission. The metal leaching tests revealed that there are no potential environmental pollution threats posed by the synthesized alkali activated GGBFS composites for long-term use.


2020 ◽  
Author(s):  
Naim Sedira ◽  
João Castro-Gomes

This study determines the effect of ground granulated blast furnace slag (GGBFS) and metakaolin (MK) on the microstructural properties of the tungsten mining waste-based alkali-activated binder (TMWM). During this investigation, TMWM was partially replaced with 10 wt.% GGBFS and 10 wt.% MK to improve the microstructure of the binder. In order to understand the effect of the substitutions on the microstructure, two pastes were produced to make a comparative study between the sample contain 100% TMWM and the ternary precursors. Both precursors were activated using a combination of alkaline activator solutions (sodium silicate and sodium hydroxide) with the ratio of 1:3 (66.6 wt.% sodium silicate combined with 33.33 wt.% of NaOH 8M). The alkali-activated mixes were cured in oven at temperature of 60 °C in the first day and at room temperature for the next 27 days. The reaction products N-A-S-H gel and (N,M)-A-S-H gel resulted from the alkaline activation reaction process. In addition, a formation of natrite (Na2CO3) with needles shape occurred as a reaction product of the fluorescence phenomena. However, a dense matrix resulted from the alkline activation of the ternary precursors containg different gels such as N-A-S-H, C-A-S-H and (N,M)-C-A-S-H gel, these results were obtained through SEM-EDS analyses, as well FTIR tests. Keywords: Mining Waste, Alkali-activated, Microstructure, Slag, Metakaolin


2013 ◽  
Vol 723 ◽  
pp. 580-587
Author(s):  
Wen Huan Zhong ◽  
Tung Hsuan Lu ◽  
Wei Hsing Huang

Electric arc furnace (EAF) reducing slag is the by-product of EAF steel-making. Currently, reducing slag is considered a waste material by the industry in Taiwan. Since the chemical content of reducing slag is similar to blast furnace slag (BFS), it is expected that reducing slag exhibits a similar pozzolanic effect as the BFS. This study used alkaline activator consisting of sodium silicate and sodium hydroxide to improve the activity of reductive slag so as to replace Portland cement as binder in concrete. Some BFS was used to blend with the reducing slag to enhance the binding quality of alkali-activated mixes. The results show that a blend of 50% BFS and 50% reducing slag can be activated successively with alkali. Also, the sulfate resistance of concrete made with alkali-activated EAF reducing slag is found to be better than that of concrete made with portland cement, while the drying shrinkage of alkali-activated EAF reducing slag concrete is greater than that of portland cement concrete.


2018 ◽  
Vol 171 ◽  
pp. 611-621 ◽  
Author(s):  
J.C.B. Moraes ◽  
A. Font ◽  
L. Soriano ◽  
J.L. Akasaki ◽  
M.M. Tashima ◽  
...  

2015 ◽  
Vol 1100 ◽  
pp. 44-49 ◽  
Author(s):  
Pavel Krivenko ◽  
Oleg Petropavlovsky ◽  
Vit Petranek ◽  
Vasiliy Pushkar ◽  
Grigorii Vozniuk

The paper discusses approaches to compositional build-up of high strength alkali activated cements made using water glass as alkaline activator represented by commercial products in a form of powder and liquid. The purpose was to study the influence of fineness of ground granulated blast-furnace slags, admixtures and additives, compatible with alkali activated cements, water glass and mode of manufacturing technology in order to reach high compressive strength (≥ 80 MPa at standard age (28 days)) and early strength (≥ 20 MPa after 3 h of hardening in normal conditions).


2013 ◽  
Vol 712-715 ◽  
pp. 905-908
Author(s):  
Qun Pan ◽  
Bin Zhu ◽  
Xiao Huang ◽  
Lin Liu

Properties of alkali-activated slag cements compounded with soluble glasse with a high silicate modulus Ms=2.6 were detailedly studied in this paper, including compressive strength and flexure strength characterictics at the ages of 3,7,28 days and flow values of fresh cement mixtures on a jolting table. As a result, with the compressive strength at the age of 28 days of 95.6-107.8 MPa has been developed, and the flow values and strength characteristics of alkali-activated slag cement mortars increased with increase in a water to cement (alkaline activator solution to slag) ratio, and the flow value (determined on the cement mortar mixtures) would reach 145 mm. Moreover, the development speed of strength characteristics of mortar specimens would be affected negatively by increasing of water demand (requirement).


In the present scenario, the production of green and sustainable concrete has become a must to substitute the ordinary Portland cement (OPC) concrete. It is an eminent fact that the manufacture of OPC requires burning of its raw materials which lead to a huge amount of carbon dioxide liberation; thus it requires a large amount of energy dissipation. The concrete produced using alkali activation has become renowned methods to replace the conventional OPC, which gives an answer to find a way to produce environmentally friendly concrete. In the current study, the alkaline activator used to activate the binder was sodium hydroxide solution dispersed in liquid sodium silicate. The utilization of industrial dissipate materials such as GGBS, fly ash, and waste glass powder was used as the binding ingredients, and stone crusher dust was used as fine aggregates. The experimental investigation showed that a quality concrete can be easily produced using alkali activation of industrial wastes satisfying its strength requirements. The statistical models developed shown that there is a significant relationship between various cube and cylinder strengths. Thus alkali-activated concrete(AAC) can effectively reduce the environmental hazards associated with OPC concrete, which also provides an effective way of utilizing major industrial byproducts


Sign in / Sign up

Export Citation Format

Share Document