scholarly journals Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy

Neoplasia ◽  
2016 ◽  
Vol 18 (12) ◽  
pp. 732-741 ◽  
Author(s):  
Chrysovalantis Voutouri ◽  
Christiana Polydorou ◽  
Panagiotis Papageorgis ◽  
Vasiliki Gkretsi ◽  
Triantafyllos Stylianopoulos
2021 ◽  
Vol 17 (1) ◽  
pp. 104-120
Author(s):  
N. Ivanenko

Relevance. Treatment of solid tumors and biofilm-derived infections face a common problem: drugs often fail to reach and kill cancer cells and microbial pathogens because of local microenvironment heterogeneities. There are remarkable challenges for current and prospective anticancer and antibiofilm agents to target and maintain activity in the microenvironments where cancer cells and microbial pathogens survive and cause the onset of disease. Bacterial infections in cancer formation will increase in the coming years. Collection of approaches such as ROS modulation in cells, the tumor is promoted by microbe’s inflammation can be a strategy to target cancer and bacteria. Besides that, bacteria may take the advantage of oxygen tension and permissive carbon sources, therefore the tumor microenvironment (TM) becomes a potential refuge for bacteria. It is noteworthy that the relationship between cancer and bacteria is intertwined. Objective: To analyze similarities between biofilm and tumor milieu that is produced against stress conditions and heterogeneous microenvironment for a combination of approaches the bacteriotherapy with chemotherapy which can help in defeating the tumor heterogeneity accompanied with malignancy, drug-resistance, and metastasis. Method: An analytical review of the literature on keywords from the scientometric databases PubMed, Wiley. Results: Bacteria evade antimicrobial treatment is mainly due to persistence that has become dormant during the stationary phase and tolerance. Drug-tolerant persisters and cellular dormancy are crucial in the development of cancer, especially in understanding the development of metastases as a late relapse. Biofilms are formed by groups of cells in different states, growing or non-growing and metabolically active or inactive in variable fractions, depending on maturity and on chemical gradients (O2 and nutrients) of the biofilms producing physiological heterogeneity. Heterogeneity in the microenvironment of cancer can be described as a non-cell autonomous driver of cancer cell diversity; in a highly diverse microenvironment, different cellular phenotypes may be selected for or against in different regions of the tumor. Hypoxia, oxidative stress, and inflammation have been identified as positive regulators of metastatic potential, drug resistance, and tumorigenic properties in cancer. It is proven that, Escherichia coli (E. coli) and life-threatening infectious pathogens such as Staphylococcus aureus (SA) and Mycobacterium tuberculosis (Mtb) are noticeably sensitive to alterations in the intracellular oxidative environment.  An alternative emerging paradigm is that many cancers may be promoted by commensal microbiota, either by translocation and adherence of microbes to cancer cells or by the distant release of inflammation-activating microbial metabolites. Microbial factors such as F. nucleatum, B. fragilis, and Enterobacteriaceae members may contribute to disease onset in patients with a hereditary form of colorectal cancer (CRC); familial adenomatous polyposis (FAP). These findings are linked with the creation of new biomarkers and therapy for identifying and treating biofilm-associated cancers.  Currently,  about 20% of neoplasms globally can be caused by infections, with  approximately 1.2 million cases annually. Several antineoplastic drugs that exhibited activity against S. mutans, including tamoxifen, doxorubicin, and ponatinib, also possessed activity against other Gram-positive bacteria. Drug repurposing, also known as repositioning, has gained momentum, mostly due to its advantages over de novo drug discovery, including reduced risk to patients due to previously documented clinical trials, lower drug development costs, and faster benchtop-to-clinic transition. Although many bacteria are carcinogens and tumor promoters, some have shown great potential towards cancer therapy. Several species of bacteria have shown an impressive power to penetrate and colonize solid tumors, which has mainly led to neoplasm slower growth and   tumor clearance.  Different strains of Clostridia, Lactococcus, Bifidobacteria, Shigella, Vibrio, Listeria, Escherichia, and Salmonella have been evaluated against cancer in animal models.  Conclusion. Cancer is a multifactorial disease and the use of bacteria for cancer therapy as an immunostimulatory agent or as a vector for carrying the therapeutic cargo is a promising treatment method. Therefore, the world has turned to an alternative solution, which is the use of genetically engineered microorganisms; thus, the use of living bacteria targeting cancerous cells is the unique option to overcome these challenges. Bacterial therapies, whether used alone or combination with chemotherapy, give a positive effect to treat multiple conditions of cancer.


Author(s):  
Menghan Gao ◽  
Hong Deng ◽  
Weiqi Zhang

: Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44- targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat the cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progresses about HA-based multidrug nano-carriers for combination cancer therapy are summarized and its potential challenges for translational applications have been discussed.


Nanoscale ◽  
2020 ◽  
Vol 12 (18) ◽  
pp. 10189-10195 ◽  
Author(s):  
Xin Zhao ◽  
Dongyang Tang ◽  
Ying Wu ◽  
Shaoqing Chen ◽  
Cheng Wang

The artifical cell system for the gene therapy of cancer might be a promising approach for the reversal of neoplastic progress of cancer cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Zhou ◽  
Meiyue Liu ◽  
Xia Li ◽  
Peng Zhang ◽  
Jiong Li ◽  
...  

Abstract Background Increased reactive oxygen species (ROS) production by arsenic treatment in solid tumors showed to be effective to sensitize cancer cells to chemotherapies. Arsenic nano compounds are known to increase the ROS production in solid tumors. Methods In this study we developed arsenic–ferrosoferric oxide conjugated Nano Complex (As2S2–Fe3O4, AFCNC) to further promote the ROS induction ability of arsenic reagent in solid tumors. We screen for the molecular pathways that are affect by arsenic treatment in ESCC cancer cells. And explored the underlying molecular mechanism for the arsenic mediated degradations of the key transcription factor we identified in the gene microarray screen. Mouse xenograft model were used to further verify the synthetic effects of AFCNC with chemo and radiation therapies, and the molecular target of arsenic treatment is verified with IHC analysis. Results With gene expression microarray analysis we found Hippo signaling pathway is specifically affected by arsenic treatment, and induced ubiquitination mediated degradation of YAP in KYSE-450 esophageal squamous cell carcinoma (ESCC) cells. Mechanistically we proved PML physically interacted with YAP, and arsenic induced degradation PML mediated the degradation of YAP in ESCC cells. As a cancer stem cell related transcription factor, YAP 5SA over expressions in cancer cells are correlated with resistance to chemo and radiation therapies. We found AFCNC treatment inhibited the increased invasion and migration ability of YAP 5SA overexpressing KYSE-450 cells. AFCNC treatment also effectively reversed protective effects of YAP 5SA overexpression against cisplatin induced apoptosis in KYSE-450 cells. Lastly, with ESCC mouse xenograft model we found AFCNC combined with cisplatin treatment or radiation therapy significantly reduced the tumor volumes in vivo in the xenograft ESCC tumors. Conclusions Together, these findings suggested besides ROS, YAP is a potential target for arsenic based therapy in ESCC, which should play an important role in the synthetic effects of arsenic nano complex with chemo and radiation therapy.


Author(s):  
Xiao Lei ◽  
Kun Cao ◽  
Yuanyuan Chen ◽  
Hui Shen ◽  
Zhe Liu ◽  
...  

Abstract Background To block repairs of DNA damages, especially the DNA double strand break (DSB) repair, can be used to induce cancer cell death. DSB repair depends on a sequential activation of DNA repair factors that may be potentially targeted for clinical cancer therapy. Up to now, many protein components of DSB repair complex remain unclear or poorly characterized. In this study, we discovered that Transglutaminase 2 (TG2) acted as a new component of DSB repair complex. Methods A bioinformatic analysis was performed to identify DNA damage relative genes from dataset from The Cancer Genome Atlas. Immunofluorescence and confocal microscopy were used to monitor the protein localization and recruitment kinetics. Furthermore, immunoprecipitation and mass spectrometry analysis were performed to determine protein interaction of both full-length and fragments or mutants in distinct domain. In situ lung cancer model was used to study the effects cancer therapy in vivo. Results After DSB induction, cytoplasmic TG2 was extensively mobilized and translocated into nucleus after phosphorylated at T162 site by DNA-PKcs. Nuclear TG2 quickly accumulated at DSB sites and directly interacting with Topoisomerase IIα (TOPOIIα) with its TGase domain to promote DSB repair. TG2 deficient cells lost capacity of DSB repair and become susceptible to ionizing radiation. Specific inhibition of TG2-TOPOIIα interaction by glucosamine also significantly inhibited DSB repair, which increased sensitivity in lung cancer cells and engrafted lung cancers. Conclusions These findings elucidate new mechanism of TG2 in DSB repair trough directly interacting with TOPOIIα, inhibition of which provided potential target for overcoming cancer resistance.


2021 ◽  
Author(s):  
Wooram Park ◽  
Seok-Jo Kim ◽  
Paul Cheresh ◽  
Jeanho Yun ◽  
Byeongdu Lee ◽  
...  

Mitochondria are crucial regulators of the intrinsic pathway of cancer cell death. The high sensitivity of cancer cells to mitochondrial dysfunction offers opportunities for emerging targets in cancer therapy. Herein,...


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A145-A145
Author(s):  
Stefano Pierini ◽  
Rashid Gabbasov ◽  
Linara Gabitova ◽  
Yumi Ohtani ◽  
Michael Klichinsky

BackgroundDespite the remarkable efficacy achieved by CAR-T therapy in hematologic malignancies, application in solid tumors has been challenging. We previously developed human CAR-M and demonstrated that adoptive cell transfer of CAR-M into xenograft models of human cancer controls tumor progression and improves overall survival [1]. Given that CAR-M are professional antigen presenting cells, we developed an immunocompetent animal model to evaluate the potential for induction of a systemic anti-tumor immune response.MethodsMurine bone marrow-derived macrophages were engineered to express an anti-HER2 CAR using the chimeric adenoviral vector Ad5f35. CAR-M were phenotypically and functionally evaluated in vitro and in syngeneic models. To evaluate CAR-M efficacy in an immunocompetent animal model, BALB/c mice were engrafted with CT26-HER2+ tumors (single-tumor model) and were treated with intratumoral CAR-HER2 or untransduced (UTD) macrophages. To evaluate epitope spreading, we simultaneously engrafted BALB/c mice with CT26-HER2+ and CT26-Wt tumors on opposite flanks (dual-tumor model), and treated mice with CAR-M or controls into the CT26-HER2+ tumor only. Peripheral and tumor-infiltrating immune cells were phenotypically and functionally characterized.ResultsIn addition to efficient gene delivery, Ad5f35 transduction promoted a pro-inflammatory (M1) phenotype in murine macrophages. CAR-M, but not control UTD macrophages, phagocytosed HER2+ target cancer cells. Anti-HER2 CAR-M eradicated HER2+ murine CT26 colorectal and human AU-565 breast cancer cells in a dose-dependent manner. CAR-M increased MHC-I and MHC-II expression on tumor cells and promoted tumor-associated antigen presentation and T cell activation. In vivo, CAR-M treatment led to tumor regression and improved overall survival in the CT26-HER2+ single-tumor model. In the dual-tumor model, CAR-M treatment cleared 75% of CT26-HER2+ tumors and inhibited the growth rate of contralateral CT26-WT tumors, demonstrating an abscopal effect. CAR-M treatment led to increased infiltration of intratumoral CD4+ and CD8+ T, NK, and dendritic cells – as well as an increase in T cell responsiveness to the CT26 MHC-I antigen gp70, indicating enhanced epitope spreading. Given the impact CAR-M had on endogenous T-cell immunity, we evaluated the combination of CAR-M and anti-PD1 in the CT26-HER2 model and found that the combination further enhanced tumor control and overall survival.ConclusionsThese results demonstrate that CAR-M therapy induces epitope spreading via activation of endogenous T cells, orchestrating a systemic immune response against solid tumors. Moreover, our findings provide rationale for the combination of CAR-M with immune checkpoint inhibitors. The anti-HER2 CAR-M CT-0508 will be evaluated in an upcoming Phase I clinical trial.ReferenceKlichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020;38(8):947–953.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chun-Yan Shih ◽  
Wei-Lun Huang ◽  
I-Ting Chiang ◽  
Wu-Chou Su ◽  
Hsisheng Teng

Tuning of the nitrogen-doped graphene oxide dot and ascorbic acid concentrations can selectively kill cancer cells through either apoptosis or necrosis.


Sign in / Sign up

Export Citation Format

Share Document