Protective effects of total flavonoids from Clinopodium chinense (Benth.) O. Ktze on myocardial injury in vivo and in vitro via regulation of Akt/Nrf2/HO-1 pathway

Phytomedicine ◽  
2018 ◽  
Vol 40 ◽  
pp. 88-97 ◽  
Author(s):  
Hai-Jing Zhang ◽  
Rong-Chang Chen ◽  
Gui-Bo Sun ◽  
Long-Po Yang ◽  
Yin-di Zhu ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Deqing Wang ◽  
Yuan Zhuang ◽  
Yaping Tian ◽  
Graham Neil Thomas ◽  
Mingzhong Ying ◽  
...  

Astragalus mongholicusBunge has long been used to treat cardiovascular disease in Chinese traditional medicine. However, its mechanisms are not fully understood. In this study, we explored potential mechanisms and protective effects of total flavonoids of Astragalus (TFA) on cardiovascular disease using in vitro experiments and diet-induced atherosclerotic rabbits. We identified six components and their proportion in TFA. The animal experiments showed that TFA significantly reduced plasma levels of total cholesterol and LDL cholesterol (P<0.05to 0.01), increased HDL cholesterol levels (P<0.01), and reduced the aortic fatty streak area by 43.6 to 63.6% (P<0.01). We also found that TFA scavenged superoxide and hydroxyl radicals and this effect increased with higher TFA concentration. In in vivo experiments, TFA effectively inhibited the free radical spectrum in the ischemia-reperfusion module. In conclusion, TFA was the active component ofAstragalus mongholicusBunge, which benefits cardiovascular disease attributing to the potent antioxidant activity to improve the atherosclerosis profile.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Chen ◽  
Jianping Jiang ◽  
Guanqun Chao ◽  
Xiaojie Hong ◽  
Haijun Cao ◽  
...  

Small intestine injury is an adverse effect of non-steroidal anti-inflammatory drugs (NSAIDs) that urgently needs to be addressed for their safe application. Although pure total flavonoids from citrus (PTFC) have been marketed for the treatment of digestive diseases, their effects on small intestine injury and the underlying mechanism of action remain unknown. This study aimed to investigate the potential role of autophagy in the mechanism of NSAID (diclofenac)-induced intestinal injury in vivo and in vitro and to demonstrate the protective effects of PTFC against NSAID-induced small intestine disease. The results of qRT-PCR, western blotting, and immunohistochemistry showed that the expression levels of autophagy-related 5 (Atg5), light chain 3 (LC3)-II, and tight junction (TJ) proteins ZO-1, claudin-1, and occludin were decreased in rats with NSAID-induced small intestine injury and diclofenac-treated IEC-6 cells compared with the control groups. In the PTFC group, Atg5 and LC3-II expression, TJ protein expression, and the LC3-II/LC3-I ratio increased. Furthermore, the mechanism by which PTFC promotes autophagy in vivo and in vitro was evaluated by western blotting. Expression levels of p-PI3K and p-Akt increased in the intestine disease-induced rat model group compared with the control, but decreased in the PTFC group. Autophagy of IEC-6 cells was upregulated after treatment with a PI3K inhibitor, and the upregulation was significantly more after PTFC treatment, suggesting PTFC promoted autophagy through the PI3K/Akt signaling pathway. In conclusion, PTFC protected intestinal barrier integrity by promoting autophagy, which demonstrates its potential as a therapeutic candidate for NSAID-induced small intestine injury.


2021 ◽  
Author(s):  
Shimin Sun ◽  
Jingfan Weng ◽  
Qi Yang ◽  
Xingxiao Huang ◽  
Hanlin Zhang ◽  
...  

Abstract Introduction Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug, but the clinical application of DOX is seriously limited by its dose-dependent cardiotoxicity. Ononin is a natural isoflavone glycoside and plays a key role in modulating apoptosis related signaling pathways. The aim of this study was to assess the possible cardioprotective effects of Ononin in DOX-induced cardiotoxicity and the underlying molecular mechanisms. Materials and methods Wistar rats were treated with normal saline, DOX with or without Ononin. After the last administration, cardiac function was evaluated by echocardiography. Rats were then sacrificed for histological and TUNEL analyses, with immunological detection for β-actinin, Bax, Bcl-2, GRP78, CHOP and SIRT3. An enzyme-linked immunosorbent assay was performed to assess the myocardial injury markers. H9C2 cells were treated with vehicle, DOX with or without Ononin. Then, 3-TYP was used to find out the relationship between ER stress and SIRT3. Results Ononin treatment ameliorated DOX-induced myocardial injury as demonstrated by echocardiography. Ononin partially restored DOX-induced cardiac dysfunction, both LVEF and LVFS were increased under the cotreatment of Ononin. Ononin also inhibited DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. DOX group had a higher Bax/Bcl-2 ratio, GRP78 and CHOP expression then control group, but Ononin treatment improved these results. This effect was associated with SIRT3 activity, moreover, selective inhibition of SIRT3 blocked the protective effects of Ononin. Conclusion In the present study, we tested the hypothesis that Ononin may protect against DOX-induced cardiomyopathy through ER stress both in vitro and in vivo. Ononin is able to protect against DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, this effect may via stimulation of the SIRT3 pathway.


2021 ◽  
Author(s):  
Shimin Sun ◽  
Jingfan Weng ◽  
Qi Yang ◽  
Xingxiao Huang ◽  
Zhenzhu Sun ◽  
...  

Abstract Introduction Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug, but the clinical application of DOX is seriously limited by its dose-dependent cardiotoxicity. Ononin is a natural isoflavone glycoside and plays a key role in modulating apoptosis related signaling pathways. The aim of this study was to assess the possible cardioprotective effects of Ononin in DOX-induced cardiotoxicity and the underlying molecular mechanisms. Materials and methods Wistar rats were treated with normal saline, DOX with or without Ononin. After the last administration, cardiac function was evaluated by echocardiography. Rats were then sacrificed for histological and TUNEL analyses, with immunological detection for β-actinin, Bax, Bcl-2, GRP78, CHOP and SIRT3. An enzyme-linked immunosorbent assay was performed to assess the myocardial injury markers. H9C2 cells were treated with vehicle, DOX with or without Ononin. Then, 3-TYP was used to find out the relationship between ER stress and SIRT3. Results Ononin treatment ameliorated DOX-induced myocardial injury as demonstrated by echocardiography. Ononin partially restored DOX-induced cardiac dysfunction, both LVEF and LVFS were increased under the cotreatment of Ononin. Ononin also inhibited DOX-induced ER stress and apoptosis in rat cardiomyocytes and H9C2 cells. DOX group had a higher Bax/Bcl-2 ratio, GRP78 and CHOP expression then control group, but Ononin treatment improved these results. This effect was associated with SIRT3 activity, moreover, selective inhibition of SIRT3 blocked the protective effects of Ononin. Conclusion In the present study, we tested the hypothesis that Ononin may protect against DOX-induced cardiomyopathy through ER stress both in vitro and in vivo. Ononin is able to protect against DOX-induced cardiotoxicity by inhibiting ER stress and apoptosis, this effect may via stimulation of the SIRT3 pathway.


2020 ◽  
Vol 58 (1) ◽  
pp. 854-862
Author(s):  
Kaiwen Lin ◽  
Yong Wang ◽  
Jingwen Gong ◽  
Yinfeng Tan ◽  
Tang Deng ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yadong Li ◽  
Li Zhang ◽  
Ping Zhang ◽  
Zhiying Hao

We aim to investigate the effect and mechanism of dehydrocorydaline (Deh), an alkaloidal component isolated from Rhizoma corydalis, in the treatment of sepsis-mediated myocardial injury. Lipopolysaccharide (LPS) was taken to construct an in-vitro sepsis-myocardial injury models H9C2 cardiomyocytes. The in-vivo model of sepsis in C57BL/6 mice was induced by intraperitoneal injection of Escherichia coli (E. coli). The in-vitro and in-vivo models were treated with Deh in different concentrations, respectively. Hematoxylin-eosin (HE) staining, Masson staining, and immunohistochemistry (IHC) staining were taken to evaluate the histopathological changes of the heart. ELISA was applied to evaluate the levels of inflammatory factors, including IL-6, IL-1β, TNFα, IFNγ, and oxidized factors SOD, GSH-PX in the plasma or culture medium. Western blot was used to measure the expressions of Bax, Bcl2, Caspase3, iNOS, Nrf2, HO-1, TRAF6, NF-κB in heart tissues and cells. The viability of H9C2 cardiomyocytes was detected by the CCK8 method and BrdU assay. The ROS level in the H9C2 cardiomyocytes were determined using immunofluorescence. As a result, Deh treatment improved the survival of sepsis mice, reduced TUNEL-labeled apoptosis of cardiomyocytes. In vitro, Deh enhanced the viability of LPS-induced H9C2 cardiomyocytes and inhibited cell apoptosis. Additionally, Deh showed significant anti-inflammatory and anti-oxidative stress functions via decreasing IL-1β, IL-6, TNFα, and IFNγ levels, mitigating ROS level, up-regulating Nrf2/HO-1, SOD, and GSH-PX expressions dose-dependently. Mechanistically, Deh inhibited TRAF6 expression and the phosphorylation of NF-κB p65. The intervention with a specific inhibitor of TRAF6 (C25-140) or NF-κB inhibitor (BAY 11-7082) markedly repressed the protective effects mediated by Deh. In conclusion, Deh restrains sepsis-induced cardiomyocyte injury by inhibiting the TRAF6/NF-κB pathway.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1860
Author(s):  
Patricia Diez-Echave ◽  
Izaskun Martín-Cabrejas ◽  
José Garrido-Mesa ◽  
Susana Langa ◽  
Teresa Vezza ◽  
...  

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


2021 ◽  
Vol 36 (1) ◽  
pp. 964-976
Author(s):  
Ilaria Dettori ◽  
Irene Fusco ◽  
Irene Bulli ◽  
Lisa Gaviano ◽  
Elisabetta Coppi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document