Preparation and characterization of cellulose nitrate-acetate mixed ester fibers

Polymer ◽  
2010 ◽  
Vol 51 (16) ◽  
pp. 3774-3783 ◽  
Author(s):  
Lili Li ◽  
Margaret Frey
FLORESTA ◽  
2019 ◽  
Vol 49 (2) ◽  
pp. 219
Author(s):  
Mayara Elita Carneiro ◽  
Marina Stygar Lopes ◽  
Anna Luisa Franco Baumel de Andrade ◽  
Silvana Nisgoski ◽  
Graciela Inês Bolzon de Muniz

The objective of this work was the characterization of cellulose and cellulose nitrate nanofilms from the mixture of Kraft pulps of  Pinus sp. and Eucalyptus sp. bleached. The production of nanocellulose was made by mechanical processing. To obtain the cellulose nitrate, the nitration was carried out in part of the produced nanocellulose. The characterizations were performed by means of scanning electron microscopy, medium infrared spectroscopy, tensile strength and absorption assay.  The results demonstrate that there was influence of  nitration in the characteristics of the films produced. The nanofilms of cellulose nitrate appear more interesting for the absorption property, indicating the use of this process for uses that require this characteristic.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 351-355 ◽  
Author(s):  
DL Moore ◽  
EL Mills

Abstract The mechanism by which influenza virus interferes with polymorphonuclear leukocyte (PMN) chemotaxis was investigated. Incubation of human PMN with influenza A virus in vitro for 30 minutes significantly decreased PMN migration under agarose in response to N- formyl-methionyl-leucyl-phenylalanine (FMLP) or zymosan-activated serum. Virus-treated PMN tended to aggregate in the under-agarose assay. Aggregation was avoided by using a more dilute PMN suspension in filter assays. Virus treatment significantly decreased migration through 100-micron thick cellulose nitrate filters but had no effect on migration through 10-micron thick polycarbonate filters or on PMN bipolar shape change. Virus was not chemotactic in the polycarbonate filter assay and did not induce shape change in purified PMN. It was concluded that influenza virus did not interfere with the ability of PMN to recognize a chemoattractant, undergo shape change, and move a short distance but did limit the extent of migration. Inhibition could not be explained by chemotactic deactivation, since the virus was not chemotactic.


1978 ◽  
Vol 10 (5) ◽  
pp. 547-556 ◽  
Author(s):  
Kenji Kamide ◽  
Tetsuro Okada ◽  
Toshikazu Terakawa ◽  
Katsumasa Kaneko

Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 351-355
Author(s):  
DL Moore ◽  
EL Mills

The mechanism by which influenza virus interferes with polymorphonuclear leukocyte (PMN) chemotaxis was investigated. Incubation of human PMN with influenza A virus in vitro for 30 minutes significantly decreased PMN migration under agarose in response to N- formyl-methionyl-leucyl-phenylalanine (FMLP) or zymosan-activated serum. Virus-treated PMN tended to aggregate in the under-agarose assay. Aggregation was avoided by using a more dilute PMN suspension in filter assays. Virus treatment significantly decreased migration through 100-micron thick cellulose nitrate filters but had no effect on migration through 10-micron thick polycarbonate filters or on PMN bipolar shape change. Virus was not chemotactic in the polycarbonate filter assay and did not induce shape change in purified PMN. It was concluded that influenza virus did not interfere with the ability of PMN to recognize a chemoattractant, undergo shape change, and move a short distance but did limit the extent of migration. Inhibition could not be explained by chemotactic deactivation, since the virus was not chemotactic.


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document