scholarly journals Soil stiffness as a function of dry density and the degree of saturation for compaction control

Author(s):  
Fumio Tatsuoka ◽  
Takeshi Hashimoto ◽  
Kazuyoshi Tateyama
Author(s):  
A. A. AL-Rawas

Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.


Author(s):  
Mozhen Hu ◽  
Yu-Jun Cui ◽  
Yunzhi Tan

Metakaolin has been widely used as pozzolanic additive to improve the pozzolanic activity of lime-based products. In this study, normal standard Proctor compaction test was performed on metakaolin with (5% lime) and without (0% lime) lime addition. The changes in stiffness, suction and microstructure with remoulding water content were investigated on statically compacted samples. Results show that lime-treated metakaolin exhibits one and half-peak compaction curve, while untreated metakaolin exhibits common one-peak compaction curve. The uncommon shape of the compaction curve of the treated metakaolin can be explained by the non-fully developed soil suction when water is not continuous. Treated and untreated samples compacted at both dry and wet of optimum show uni-modal pore size distribution characteristics, indicating the absence of aggregates. This is related to the specific thermal treatment, forming separate metakaolin platelets and leading to a modified uniform structure with diffuse platelets. The soil stiffness is rather dominated by the number of particle contacts or soil dry density, the effect of suction being insignificant. For the suction changes, on the dry side, the effect of pore size distribution prevails facing the effect of water content, while on wet side it is the effect of water content that becomes prevailing.


2019 ◽  
Vol 92 ◽  
pp. 12012 ◽  
Author(s):  
Junwen Huang ◽  
Yan Su ◽  
Guanyu Zhu ◽  
Rui Chen ◽  
Xiaofeng Wu

Super typhoon Mangkhut resulted a large number of fallen tree in form of uprooting in university town of Shenzhen (UTSZ), which hadn't happened for years. This study conducted a survey about tree uprooting induced by super typhoon Mangkhut in UTSZ, aiming to reveal main reasons for tree uprooting in UTSZ. Species of fallen trees were recognized. Fallen direction and height of fallen tree were measured. Also depth and diameter of root-soil plate and dry density of soil beneath root-soil plate were measured. The results showed that many fallen trees with uprooting in UTSZ had relatively small volume of root-soil plate which was not able to offer sufficient anchorage to tree during typhoon. One of solutions to avoid this phenomenon is not to select tree species with shallow root depth. Ponding was found in many places where uprooting occurred in UTSZ. Increase of degree of saturation of soil induced by ponding can significantly decrease soil strength which is a major component of anchorage of tree. Thus we recommend to modify the poor drainage condition of soil in UTSZ. Degree of compaction of soil may not be a main factor related to tree uprooting in UTSZ.


Author(s):  
Agostino Walter Bruno ◽  
Doaa Alamoudi

AbstractThis paper proposes a simple thermal conductivity model for geomaterials accounting for the combined effect of both degrees of saturation and dry density. The model only requires the determination of the thermal conductivity under dry conditions (i.e., at a degree of saturation equal to zero) and as little as two additional measurements of thermal conductivity performed at different levels of degree of saturation and dry density. The model is a function of only two fitting parameters, namely the moisture factor $${m}_{f}$$ m f and the density factor $${m}_{d}$$ m d . Despite its simplicity, the model can correctly predict the thermal conductivity of geomaterials and this has been validated against five sets of experimental data obtained on a very broad range of materials ranging from fine (e.g., bentonite) to coarser soils (e.g., a mix of gravel, coarse sand and silt) tested at different levels of degree of saturation and dry density. The paper also shows that the model can be applied to different engineering contexts such as (a) the thermal behaviour of earth materials used for building construction, (b) the thermal performance of bentonites employed for the storage of nuclear waste and (c) the estimation of the heat exchange in shallow geothermal reservoirs. Finally, the proposed model can be easily implemented in a finite element code to perform numerical simulations to study the heat transfer in unsaturated geomaterials.


Author(s):  
Lary R. Lenke ◽  
R. Gordon McKeen ◽  
Matt P. Grush

The use of nuclear methods for compaction control is increasingly problematic for state highway agencies. Regulatory and safety issues have prompted agencies such as the New Mexico State Highway and Transportation Department to look for nonnuclear alternatives for compaction control. A laboratory evaluation of one such commercially available device, known as the GeoGauge, is described. The GeoGauge measures soil stiffness, arguably a more viable engineering parameter than moisture—density measurement. The GeoGauge was found to measure soil stiffness as advertised. Results relating moisture, density, and stiffness were found to be consistent with earlier research on compaction and mechanical strength of soils. However, because of the dynamic nature of the measurement obtained with the GeoGauge and associated boundary constraints, the ability to obtain a target value for stiffness in the laboratory has proved to be elusive. Because of the promising nature of the GeoGauge technology, and because it measures a true engineering mechanical property, a paradigm shift may be necessary for its implementation in field compaction control. Future specifications for compaction using this technology may require specific controls of moisture and compaction equipment with stiffness monitoring via the GeoGauge.


2019 ◽  
Vol 92 ◽  
pp. 18002 ◽  
Author(s):  
Fumio Tatsuoka ◽  
Toru Miura

For satisfactory performance of soil structures, it is necessary to properly control soil compaction ensuring the physical properties of compacted soil required in design. Usually the dry density ρd and the water content w are controlled in relation to the maximum dry density (ρd)max and the optimum water content wopt determined by laboratory compaction tests on a chosen representative sample at a certain compaction energy level CEL. Although CEL and soil type affect significantly (ρd)max, wopt and physical properties, they change inevitably, sometimes largely, in a given project while field CEL may not match the value used in the laboratory compaction tests. In comparison, the optimum degree of saturation (Sr)opt (i.e., Sr when (ρd)max is obtained) and the normalized compaction curve (i.e., ρd/(ρd)max vs. Sr - (Sr)opt relation) for given CEL and soil type are insensitive to variations in CEL and soil type and they are essentially fixed in a given project. Besides, the stress-strain and hydraulic properties of compacted soil are controlled by ρd and “Sr at the end of compaction relative to (Sr)opt”. It is proposed to control w and CEL so that Sr= (Sr)opt while ρd becomes large enough to ensure the physical properties required in design fully taking advantage of available field CEL on site. A case history of earth-fill dam construction in Japan following this soil compaction control method is reported.


2016 ◽  
Vol 20 (3) ◽  
pp. 5-14 ◽  
Author(s):  
Dariusz Błażejczak ◽  
Jan B. Dawidowski

AbstractThe objective of the paper was to verify the previously obtained results of research concerning the impact of the plate diameter on the measured value of the pre-compaction stress of silt (NG), in conditions of a wider range of soil types and their initial stage. The research was carried out on samples with a diameter of 100 mm and height of 30 mm produced from the soil material (M) or collected from the subsoil of the selected soils (AWN) with the granulation type of: silt loam, loam, light loam, sandy-clay soil. The following soils properties were determined: the granulation type, density of the solid phase, content of humus and calcium carbonate, reaction, plastic and liquid limit. The properties of samples were described with moisture, dry density of solid particles, porosity of aeration, degree of plasticity and degree of saturation. The samples were loaded with a testing machine with plates with varied diameters. The value of the pre-compaction stress of soil was measured with the method of searching the crossing point of tangents with the secondary stress curve and the original stresses curve (a classical method). It was found out that for samples M with the degree of saturation of 0.40-0.50, the pre-compaction stress does not significantly depend on the plate diameter. For samples M or AWN, with the degree of saturation of 0.64-0.82, the pre-compaction stress significantly depends on the diameter of the plate. A conclusion was formulated that in the research of NG with the method of uniaxial defonnations, the relation of the diameter of the plate (d) to the diameter of the cylinder (D) should be within 0.5 ≤ d/D ≤ 0.8.


2021 ◽  
Author(s):  
Alessandro Fraccica ◽  
Enrique Romero ◽  
Thierry Fourcaud

<p>Soil tensile strength plays an important role in the hydro-mechanical behaviour of earth structures and slopes interacting with the atmosphere. Shrinkage-induced cracking may be generated by drying/wetting cycles, with consequent faster water infiltration from the top of slopes and reduction of the safety factor. Vegetation roots were proven to increase soil shear strength, but less is known about their effects on soil tensile strength. For this purpose, new equipment has been designed and used to induce plant growth in compacted soil samples and to perform uniaxial tensile tests on the reinforced material. The equipment is composed of two cylindrical moulds linked by a soil bridge in which the tensile crack is induced due to geometrical restraints.</p><p>For this study, silty sand was chosen and compacted at a low dry density (ρ<sub>d</sub> = 1.60 Mg/m<sup>3</sup>) and at a water content w = 15%. After compaction, samples were gently poured with water up to a high degree of saturation (S<sub>r</sub> ≈ 0.95) and low suction (s ≈ 1 kPa). Then, six of them were seeded with Cynodon dactilon, adopting fixed seeding density and spacing. Plants were irrigated and let to grow for three months: during this period, suction was monitored by a tensiometer. Seven fallow specimens were prepared following the same procedure, for comparison purposes.</p><p>When ready, samples were dried in a temperature/relative humidity-controlled room and left in the darkness for three hours, to attain and equalise the desired value of initial suction. Finally, the tensile stress was induced on the soil by a displacement rate of 0.080 mm/min. For each test, suction was continuously monitored by a tensiometer while the water content was checked at the beginning and at the end. Moreover, the void ratio and the root volume and area ratio were assessed close to the crack generated, at the end of each test.</p><p>The hydraulic state affected the soil mechanical response upon uniaxial extension: an increase of strength and a more brittle behaviour were observed as suction was increasing. At the same suction, a higher strength was systematically observed in the vegetated soil. In fact, even at very low suction (i.e. s = 1 kPa), vegetation roots induced a considerable increase in soil tensile strength (i.e. 10 kPa). The soil hydraulic state also affected the root failure mechanism. In wet soil, the roots subjected to tension were stretched and pulled-out whereas in dry soil they experienced a more immediate breakage (i.e. in concomitance with the cracking of the surrounding soil). Some preliminary PIV (Particle Image Velocimetry) analyses showed differences among dry/wet and fallow/vegetated soils. Indeed, a more diffuse strain field was observed in vegetated samples, thanks to the redistribution of stresses induced by the roots.</p><p>Results were successfully interpreted by a well-established shear strength criterion for partially saturated soils, considering the degree of saturation, suction and soil microstructure. An increase of the soil shear strength was observed and correlated to the presence of roots and to their geometrical and mechanical features. Moreover, good consistency was detected with results coming from other equipment.</p><p> </p>


2012 ◽  
Vol 446-449 ◽  
pp. 1454-1457
Author(s):  
Wen Jing Sun ◽  
De An Sun ◽  
Jin Yi Zhang

The strength, deformation and hydro-mechanical behaviours of a compacted unsaturated Gaomiaozi bentonite-sand mixture under undrained condition are studied by conducting a series of isotropic compression tests and triaxial shear tests under constant water content. During undrained isotropic compression testing, void ratio and suction decrease while degree of saturation increases. The stress-strain relations are obtained from undrained triaxial shear tests. The volume contraction and lateral expansion can be observed. The suction decreases with increasing shearing. The net confining pressure and initial dry density affect the initial rigidity, undrained shear strength, volumetric deformation and hydro-mechanical behaviour.


Sign in / Sign up

Export Citation Format

Share Document