scholarly journals Nutritional values of Zonocerus variegatus, Macrotermes bellicosus and Cirina forda insects: mineral composition, fatty acids and amino acid profiles

2021 ◽  
pp. e00798
Author(s):  
Chidiebere O. Atowa ◽  
Benedict C. Okoro ◽  
Ekene C. Umego ◽  
Angelina O. Atowa ◽  
Okezie Emmanuel ◽  
...  
2012 ◽  
Vol 37 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Yosef Dror ◽  
Shlomo Almashanu ◽  
Emilia Lubart ◽  
Ben-Ami Sela ◽  
Liron Shimoni ◽  
...  

2020 ◽  
Vol 5 (3) ◽  
pp. 22-27
Author(s):  
I. L. Stefanova ◽  
L. V. Shakhnazarova ◽  
A. Yu. Klimenkova ◽  
I. M. Sorokina

The changes in the amino and fatty acid profiles in the semifinished foodstuffs (SFFs) based on broiler meat and coagulated chicken egg melange after different types of thermal treatment (water or steam boiling, braising, baking, frying) were studied. The amino acid profiles were determined on Knauer analyzer; tryptophan by standard method. The biological value of the treated products was assessed using amino acid balance coefficients calculated by the method of N. N. Lipatov. It was found that the changes in the initial amino acid profiles of the SFFs were the least after water and steam boiling; braising and baking were found to increase the contents of the essential amino acids. The amino acid profiles in the treated SFFs were close to the reference values. The best criteria of their biological value (coefficient of rationality of amino acid composition, comparable redundance) were found after water and steam boiling. It was found that all types of thermal treatments insignificantly affected the parameters of fatty acid balance within the SFFs; the changes found were primarily related to slight increase in total content of saturated fatty acids and increase in total content of polyunsaturated fatty acids (PUFAs) in compare to initial profiles, by 2.64–3.88% depending on the treatment type. The changes in ω‑6/ω‑3 PUFAs ratios were more substantial especially after braising


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dunfang Wang ◽  
Xuran Ma ◽  
Shanshan Guo ◽  
Yanli Wang ◽  
Tao Li ◽  
...  

As a classic prescription, Huangqin Tang (HQT) has been widely applied to treat ulcerative colitis (UC), although its pharmacological mechanisms are not clear. In this study, urine metabolomics was first analysed to explore the therapeutic mechanisms of HQT in UC rats induced by TNBS. We identified 28 potential biomarkers affected by HQT that might cause changes in urine metabolism in UC rats, mapped the network of metabolic pathways, and revealed how HQT affects metabolism of UC rats. The results showed that UC affects amino acid metabolism and biosynthesis of unsaturated fatty acids and impairs the tricarboxylic acid cycle (TCA cycle). UC induced inflammatory and gastrointestinal reactions by inhibiting the transport of fatty acids and disrupting amino acid metabolism. HQT plays key roles via regulating the level of biomarkers in the metabolism of amino acids, lipids, and so on, normalizing metabolic disorders. In addition, histopathology and other bioinformatics analysis further confirm that HQT altered UC rat physiology and pathology, ultimately affecting metabolic function of UC rats.


2021 ◽  
Vol 100 ◽  
pp. 103921
Author(s):  
Diana K. Baigts-Allende ◽  
Alexa Pérez-Alva ◽  
Melissa A. Ramírez-Rodrigues ◽  
Adriana Palacios ◽  
Milena M. Ramírez-Rodrigues

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1247
Author(s):  
Xin Wu ◽  
Shuai Huang ◽  
Jinfeng Huang ◽  
Peng Peng ◽  
Yanan Liu ◽  
...  

The rumen contains abundant microorganisms that aid in the digestion of lignocellulosic feed and are associated with host phenotype traits. Cows with extremely high milk protein and fat percentages (HPF; n = 3) and low milk protein and fat percentages (LPF; n = 3) were selected from 4000 lactating Holstein cows under the same nutritional and management conditions. We found that the total concentration of volatile fatty acids, acetate, butyrate, and propionate in the rumen fluid was significantly higher in the HPF group than in the LPF group. Moreover, we identified 38 most abundant species displaying differential richness between the two groups, in which Prevotella accounted for 68.8% of the species, with the highest abundance in the HPF group. Functional annotation based on the Kyoto Encyclopedia of Gene and Genome (KEGG), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG), and Carbohydrate-Active enzymes (CAZy) databases showed that the significantly more abundant species in the HPF group are enriched in carbohydrate, amino acid, pyruvate, insulin, and lipid metabolism and transportation. Furthermore, Spearman’s rank correlation analysis revealed that specific microbial taxa (mainly the Prevotella species and Neocallimastix californiae) are positively correlated with total volatile fatty acids (VFA). Collectively, we found that the HPF group was enriched with several Prevotella species related to the total VFA, acetate, and amino acid synthesis. Thereby, these fulfilled the host’s needs for energy, fat, and rumen microbial protein, which can be used for increased biosynthesis of milk fat and milk protein. Our findings provide novel information for elucidation of the regulatory mechanism of the rumen in the formation of milk composition.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2033
Author(s):  
Chuleeporn Bungthong ◽  
Sirithon Siriamornpun

Silk proteins have many advantageous components including proteins and pigments. The proteins—sericin and fibroin—have been widely studied for medical applications due to their good physiochemical properties and biological activities. Various strains of cocoon display different compositions such as amino-acid profiles and levels of antioxidant activity. Therefore, the objectives of this study were to find a suitable silk protein extraction method to obtain products with chemical and biological properties suitable as functional foods in two strains of Bombyx mori silk cocoon (Nangsew strains; yellow cocoon) and Samia ricini silk cocoon (Eri strains; white cocoon) extracted by water at 100 °C for 2, 4, 6 and 8 h. The results showed that Nangsew strains extracted for 6 h contained the highest amounts of protein, amino acids, total phenolics (TPC) and total flavonoids (TFC), plus DPPH radical-scavenging activity, ABTS radical scavenging capacity, and ferric reducing antioxidant power (FRAP), anti-glycation, α-amylase and α-glucosidase inhibition. The longer extraction time produced higher concentrations of amino acids, contributing to sweet and umami tastes in both silk strains. It seemed that the bitterness decreased as the extraction time increased, resulting in improvements in the sweetness and umami of silk-protein extracts.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Natalia Śmietana ◽  
Remigiusz Panicz ◽  
Małgorzata Sobczak ◽  
Przemysław Śmietana ◽  
Arkadiusz Nędzarek

The aim of the study was to present a comprehensive characterisation of crayfish meat, which is crucial to assess its potential usefulness in the food industry. To this end, we assessed the yield, basic chemical composition (protein, fat, minerals), nutritional value (amino acid and fatty acid profiles, essential amino acid index (EAAI), chemical score of essential amino acids (CS), hypocholesterolaemic/hypercholesterolaemic ratio (h/H), atherogenicity (AI) and thrombogenicity (TI) indices), as well as culinary value (lab colour, texture, sensory characteristics, structure) of the meat of spiny-cheek crayfish (Faxonius limosus) (n = 226) from Lake Sominko (Poland) harvested in May–September 2017. Crayfish meat, especially that from the abdomen, was shown to have high nutritional parameters. It is lean (0.26% of fat), with a favourable fatty acid profile and a very high quality of fat (PUFA (sum of polyunsaturated fatty acids):SFA (sum of saturated fatty acids), n-6/n-3, h/H, AI, TI) and protein (high CS and EAAI). It is also a better source of Ca, K, Mg, Na, P, and Cu than meat from slaughter animals. Hence, crayfish meat can be an alternative to livestock meat in the human diet. Owing to its culinary value (delicateness, weak game flavour, and odour), it meets the requirements of the most demanding consumers, i.e., children and older people.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiroki Nishi ◽  
Daisuke Yamanaka ◽  
Masato Masuda ◽  
Yuki Goda ◽  
Koichi Ito ◽  
...  

AbstractStudies on animal models have demonstrated that feeding a low-arginine diet inhibits triacylglycerol (TAG) secretion from the liver, resulting in marked fatty liver development in rats. Here, we first showed that culturing hepatocytes in the medium mimicking the serum amino acid profile of low-arginine diet-fed rats induced TAG accumulation in the cells, indicating that the specific amino acid profile caused TAG accumulation in hepatocytes. Dietary adenine supplementation completely recovered hepatic TAG secretion and abolished hepatic TAG accumulation in rats. A comprehensive non-linear analysis revealed that inhibition of hepatic TAG accumulation by dietary adenine supplementation could be predicted using only serum amino acid concentration data. Comparison of serum amino acid concentrations indicated that histidine, methionine, and branched-chain amino acid (BCAA) concentrations were altered by adenine supplementation. Furthermore, when the serum amino acid profiles of low-arginine diet-fed rats were altered by modifying methionine or BCAA concentrations in their diets, their hepatic TAG accumulation was abolished. Altogether, these results suggest that an increase in methionine and BCAA levels in the serum in response to dietary arginine deficiency is a key causative factor for hepatic TAG accumulation, and dietary adenine supplementation could disrupt this phenomenon by altering serum amino acid profiles.


Sign in / Sign up

Export Citation Format

Share Document