Genotype-independent in vivo oxidative stress following a methionine loading test: Maximal platelet activation in subjects with early-onset thrombosis

2011 ◽  
Vol 128 (4) ◽  
pp. e43-e48 ◽  
Author(s):  
Matteo Nicola Dario Di Minno ◽  
Salvatore Pezzullo ◽  
Vittorio Palmieri ◽  
Antonio Coppola ◽  
Armando D'Angelo ◽  
...  
2013 ◽  
Vol 110 (12) ◽  
pp. 1232-1240 ◽  
Author(s):  
Francesca Santilli ◽  
Natale Vazzana ◽  
Pierpaolo Iodice ◽  
Stefano Lattanzio ◽  
Rossella Liani ◽  
...  

SummaryPhysical activity is associated with cardiovascular risk reduction, but the effects of exercise on platelet activation remain controversial. We investigated the effects of regular high-amount, high intensity aerobic exercise on in vivo thromboxane (TX)-dependent platelet activation and plasma levels of platelet-derived proteins, CD40L and P-selectin, and whether platelet variables changes may be related to changes in high-density lipoprotein (HDL) and in the extent of oxidative stress and oxidative stress-related inflammation, as reflected by urinary isoprostane excretion and endogenous soluble receptor for advanced glycation end-products (esRAGE), respectively. Urinary excretion of 11-dehydro-TXB2 and 8-iso-prostaglandin (PG)F2α and plasma levels of P-selectin, CD40L and esRAGE were measured before and after a eight-week standardised aerobic high-amount–high-intensity training program in 22 sedentary subjects with low-to-intermediate risk. Exercise training had a clear beneficial effect on HDL cholesterol (+10%, p=0.027) and triglyceride (-27%, p=0.008) concentration. In addition, a significant (p<0.0001) decrease in urinary 11-dehydro-TXB2 (26%), 8-iso-PGF2α (21 %), plasma P-selectin (27%), CD40L (35%) and a 61% increase in esRAGE were observed. Multiple regression analysis revealed that urinary 8-iso-PGF2α [beta=0.33, SEM=0.116, p=0.027] and esRAGE (beta=-0.30, SEM=31.3, p=0.046) were the only significant predictors of urinary 11-dehydro-TXB2 excretion rate over the training period. In conclusion, regular high-amount–high-intensity exercise training has broad beneficial effects on platelet activation markers, paralleled and possibly associated with changes in the lipoprotein profile and in markers of lipid peroxidation and AGE/RAGE axis. Our findings may help explaining why a similar amount of exercise exerts significant benefits in preventing cardiovascular events.


2012 ◽  
Vol 108 (09) ◽  
pp. 533-542 ◽  
Author(s):  
Alfredo Dragani ◽  
Angela Falco ◽  
Francesca Santilli ◽  
Stefania Basili ◽  
Giancarlo Rolandi ◽  
...  

SummaryThe methylenetetrahydrofolate reductase (MTHFR) 677 C→T polymorphism may be associated with elevated total homocysteine (tHcy) levels, an independent risk factor for cardiovascular disease. It was the study objective to evaluate in vivo lipid peroxidation and platelet activation in carriers of the MTHFR 677 C→T polymorphism and in non-carriers, in relation to tHcy and folate levels. A cross-sectional comparison of urinary 8-iso-prostaglandin (PG)F2α and 11-dehydro-thromboxane (TX)B2 (markers of in vivo lipid peroxidation and platelet activation, respectively) was performed in 100 carriers and 100 non-carriers of the polymorphism. A methionine-loading test and folic acid supplementation were performed to investigate the causal relationship of the observed associations. Urinary 8-iso-PGF2α and 11-dehydro-TXB2 were higher in carriers with hyperhomocysteinaemia than in those without hyperhomocysteinaemia (p<0.0001). Hyperhomocysteinaemic carriers had lower folate levels (p=0.0006), higher urinary 8-iso-PGF2α (p<0.0001) and 11-dehydro-TXB2 (p<0.0001) than hyperhomocysteinaemic non-carriers. On multiple regression analysis, high tHcy (p<0.0001), low folate (p<0.04) and MTHFR 677 C→T polymorphism (p<0.001) independently predicted high rates of 8-iso-PGF2α excretion. Methionine loading increased plasma tHcy (p=0.002), and both urinary prostanoid metabolites (p=0.002). Folic acid supplementation was associated with decreased urinary 8-iso-PGF2α and 11-dehydro-TXB2 excretion (p<0.0003) in the hyperhomocysteinaemic group, but not in the control group, with substantial inter-individual variability related to baseline tHcy level and the extent of its reduction. In conclusion, hyperhomocysteinaemia due to the MTHFR 677 C→T polymorphism is associated with enhanced in vivo lipid peroxidation and platelet activation that are reversible, at least in part, following folic acid supplementation. An integrated biomarker approach may help identifying appropriate candidates for effective folate supplementation.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Sudipta Biswas ◽  
Soumya Panigrahi ◽  
Alejandro Zimman ◽  
Eugene Podrez

A prothrombotic state and increased platelet reactivity are common in pathophysiological conditions associated with oxidative stress. Lipid peroxidation, a major consequence of oxidative stress generates highly reactive products capable of modifying autologous proteins as well as lipids. Hydroxy-ω-oxoalkenoic acids and their carboxyalkylpyrrole (CAP) protein adducts are recently described products of lipid peroxidation with strong biological activity mediated by Toll like receptors (TLR). Phosphatidylethanolamine (PE) is the second most abundant phospholipid in the living organisms. While recent studies suggest that PE is a major target for covalent modification by reactive products of lipid peroxidation, the presence of such products in vivo, their biological activities and receptors involved are not established. We now report that CAP-PE adducts are present in vivo in circulation and are significantly elevated in plasma of hyperlipidemic apoE-/- mice. In vitro experiments demonstrated that CAP-PE adducts induce platelet integrin αIIbβ3 activation, P-selectin expression and promote platelet aggregation. Multiple complimentary approaches demonstrated that platelet activation by CAP-PE is mediated by TLR2 and TLR1. Furthermore, direct interaction of CAP-PE and TLR2 was demonstrated. CAP-PE induced assembly of TLR2/TLR1 receptor complex in platelets leading to downstream signaling via MyD88/TIRAP-dependent pathway. CAPs-PE induced signaling included phosphorylation and activation of IRAK4 and subsequent activation of TRAF6, Src family kinase, Syk and PLCγ2. Thus, our study identified carboxyalkylpyrrole adducts of phosphatidylethanolamine as novel end products accumulating in circulation in hyperlipidemia that can induce platelet activation via innate immunity signaling pathway.


2005 ◽  
Vol 131 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Antonio Coppola ◽  
Armando D'Angelo ◽  
Isabella Fermo ◽  
Giuseppina Mazzola ◽  
Matteo Nicola Dario Di Minno ◽  
...  

2016 ◽  
Vol 116 (12) ◽  
pp. 1089-1099 ◽  
Author(s):  
Francesca Santilli ◽  
Rossella Liani ◽  
Patrizia Di Fulvio ◽  
Gloria Formoso ◽  
Paola Simeone ◽  
...  

SummaryResistin is an adipokine that promotes inflammation and insulin resistance by targeting several cells including platelets. We hypothesised that in type 2 diabetes (T2DM), resistin may foster in vivo oxidative stress, thromboxane-dependent platelet activation and platelet-derived inflammatory proteins release, key determinants of atherothrombosis. A cross-sectional comparison of circulating resistin, sCD40L, as a marker of platelet-mediated inflammation, asymmetric dimethylarginine (ADMA), endothelial dysfunction marker, Dickkopf (DKK)-1, reflecting the inflammatory interaction between platelets and endothelial cells, and urinary 8-iso-PGF2α and 11-dehydro-TxB2, reflecting in vivo lipid peroxidation and platelet activation, respectively, was performed between 79 T2DM patients and 30 healthy subjects. Furthermore, we investigated the effects of the α-glucosidase inhibitor acarbose and the PPARγ agonist rosiglitazone, targeting hyperglycaemia or insulin resistance, versus placebo, in 28 and 18 T2DM subjects, respectively. Age- and gender-adjusted serum resistin levels were significantly higher in patients than in controls. HOMA (β=0.266, p=0.017) and 11-dehydro-TXB2 (β=0.354, p=0.002) independently predicted resistin levels. A 20-week treatment with acarbose was associated with significant reductions (p=0.001) in serum resistin, DKK-1, urinary 11-dehydro-TXB2 and 8-iso-PGF2α with direct correlations between the change in serum resistin and in other variables. A 24-week rosiglitazone treatment on top of metformin was associated with significant decreases in resistin, DKK-1, 11-dehydro-TXB2 and 8-iso-PGF2α, in parallel with HOMA decrease. In conclusion, resistin, antagonising insulin action in part through PPARγ activation, may favour insulin resistance and enhance oxidative stress, endothelial dysfunction and platelet activation. The adipokine-platelet interactions may be involved in platelet insulin resistance and their consequent pro-aggregatory phenotype in this setting.


2001 ◽  
Vol 120 (5) ◽  
pp. A670-A670
Author(s):  
M NERI ◽  
G DAVI ◽  
D FESTI ◽  
F LATERZA ◽  
A FALCO ◽  
...  

1987 ◽  
Vol 57 (01) ◽  
pp. 062-066 ◽  
Author(s):  
P A Kyrle ◽  
J Westwick ◽  
M F Scully ◽  
V V Kakkar ◽  
G P Lewis

SummaryIn 7 healthy volunteers, formation of thrombin (represented by fibrinopeptide A (FPA) generation, α-granule release (represented by β-thromboglobulin [βTG] release) and the generation of thromboxane B2 (TxB2) were measured in vivo in blood emerging from a template bleeding time incision. At the site of plug formation, considerable platelet activation and thrombin generation were seen within the first minute, as indicated by a 110-fold, 50-fold and 30-fold increase of FPA, TxB2 and PTG over the corresponding plasma values. After a further increase of the markers in the subsequent 3 minutes, they reached a plateau during the fourth and fifth minute. A low-dose aspirin regimen (0.42 mg.kg-1.day-1 for 7 days) caused >90% inhibition of TxB2formation in both bleeding time blood and clotted blood. At the site of plug formation, a-granule release was substantially reduced within the first three minutes and thrombin generation was similarly inhibited. We conclude that (a) marked platelet activation and considerable thrombin generation occur in the early stages.of haemostasis, (b) α-granule release in vivo is partially dependent upon cyclo-oxygenase-controlled mechanisms and (c) thrombin generation at the site of plug formation is promoted by the activation of platelets.


1995 ◽  
Vol 74 (05) ◽  
pp. 1225-1230 ◽  
Author(s):  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Raffaele Tartaglione ◽  
Sergio Cortelazzo ◽  
Tiziano Barbui ◽  
...  

SummaryIn order to investigate the in vivo thromboxane (TX) biosynthesis in essential thromboeythemia (ET), we measured the urinary exeretion of the major enzymatic metabolites of TXB2, 11-dehydro-TXB2 and 2,3-dinor-TXB2 in 40 ET patients as well as in 26 gender- and age-matched controls. Urinary 11-dehydro-TXB2 was significantly higher (p <0.001) in thrombocythemic patients (4,063 ± 3,408 pg/mg creatinine; mean ± SD) than in controls (504 ± 267 pg/mg creatinine), with 34 patients (85%) having 11-dehydro-TXB2 >2 SD above the control mean. Patients with platelet number <1,000 × 109/1 (n = 25) had significantly higher (p <0.05) 11 -dehydro-TXB2 excretion than patients with higher platelet count (4,765 ± 3,870 pg/mg creatinine, n = 25, versus 2,279 ± 1,874 pg/mg creatinine, n = 15). Average excretion values of patients aging >55 was significantly higher than in the younger group (4,784 ± 3,948 pg/mg creatinine, n = 24, versus 2,405 ± 1,885 pg/mg creatinine, n = 16, p <0.05). Low-dose aspirin (50 mg/d for 7 days) largely suppressed 11-dehydro-TXB2 excretion in 7 thrombocythemic patients, thus suggesting that platelets were the main source of enhanced TXA2 biosynthesis. The platelet count-corrected 11-dehydro-TXB2 excretion was positively correlated with age (r = 0.325, n = 40, p <0.05) and inversely correlated with platelet count (r = -0.381, n = 40, p <0.05). In addition 11 out of 13 (85%) patients having increased count-corrected 11-dehydro-TXB2 excretion, belonged to the subgroup with age >55 and platelet count <1,000 × 1099/1. We conclude that in essential thrombocythemia: 1) enhanced 11-dehydro-TXB2 excretion largely reflects platelet activation in vivo;2) age as well as platelet count appear to influence the determinants of platelet activation in this setting, and can help in assessing the thrombotic risk and therapeutic strategy in individual patients.


1994 ◽  
Vol 72 (05) ◽  
pp. 745-749 ◽  
Author(s):  
Elza Chignier ◽  
Maud Parise ◽  
Lilian McGregor ◽  
Caroline Delabre ◽  
Sylvie Faucompret ◽  
...  

SummaryP-selectin, also known as CD62P, GMP140 or PADGEM, is present in platelet a-granules and endothelial cell Weibel-Palade bodies and is very rapidly expressed on the surface of these cells on activation. In this study, an anti P-selectin monoclonal antibody (LYP20) was used, in tandem with flow cytometry, to identify activated platelets at the site of induced vascular trauma or in peripheral blood. Moreover, electron microscopy was performed to characterize sites of vascular trauma and quantify the number of adhering platelets. The same induced vascular trauma was observed to result into animals responding in 2 different ways (Group I, Group II) following the degree of platelet activation. Five rats, out of 14 with induced vascular trauma, had more than half of their circulating platelets expressing P-selectin when drawn at the site of the trauma (67.4% ± 3.44) or in peripheral blood (78.5% ± 2.5) (Group I). In the remaining 9 animals a much smaller proportion of circulating platelets expressed P-selectin when assayed from trauma sites (18% ± 3.34) or in peripheral blood (18.0% ± 4.30) (Group II). Enhanced P-selectin expression by circulating platelets in Group I, compared to Group II, appears to be linked to the degree of activated platelets adhering at sites of trauma (171 ± 15 × 103 platelets versus 48 ± 31 × 103 platelets per mm2). In the 5 control animals, that were not operated on, platelets expressing P-selectin when drawn at the site of a mock trauma (7.0% ± 1.84) or in the peripheral blood (11.2% ± 3.30) showed little activation. In addition, no platelet adhesion was seen on the vascular bed of these animals. Results from this study show that analysis of P-selectin (CD62P) expression, in circulating platelets, is a valuable and rapid marker of platelet activation following severe vascular trauma induced in rats. However, activated platelets were not detected to the same extent in the peripheral blood of all animals having undergone vascular trauma. It is conceivable that platelets, depending on the degree of activation, may be actively sequestered in organs and prevented from circulating. Alternatively, P-selectin may be rapidly endocytosed, or not expressed, by activated circulating platelets depending on the type of agonists implicated in vivo activation.


Sign in / Sign up

Export Citation Format

Share Document