Role of micro and nano-particles of hBN as a secondary solid lubricant for improving tribo-potential of PAEK composite

2019 ◽  
Vol 130 ◽  
pp. 400-412 ◽  
Author(s):  
Jitendra Narayan Panda ◽  
Jayashree Bijwe ◽  
Raj K. Pandey
2019 ◽  
Vol 15 (3) ◽  
pp. 198-206 ◽  
Author(s):  
Sarfaraz Ahmed Mahesar ◽  
Saeed Ahmed Lakho ◽  
Syed Tufail Hussain Sherazi ◽  
Hamid Ali Kazi ◽  
Kamran Ahmed Abro ◽  
...  

Background: Captopril is the synthetic dipeptide used as an angiotensin converting enzyme inhibitor. Captopril is used to treat hypertension as well as for the treatment of moderate heart failure. Analytical instrumentation and methodology plays an important role in pharmaceutical analysis. Methods: This review presents some important applications of electrochemical modes used for the analysis of captopril. So far captopril has been analyzed by using different bare and modified working electrodes with a variety of modifiers from organic and inorganic materials to various types of nano particles/materials. Results: This paper presents some of the methods which have been published in the last few years i.e. from 2003 to 2016. This review highlights the role of the analytical instrumentation, particularly electrochemical methods in assessing captopril using various working electrodes. Conclusion: A large number of studies on voltammetry noted by means of various bare and modified electrodes. Among all of the published voltammetric methods, DPV, SWV, CV and miscellaneous modes were trendy techniques used to analyze captopril in pharmaceutical formulations as well as biological samples. Electrodes modified with nanomaterials are promising sensing tools as this showed high sensitivity, good accuracy with precision as well as selectivity. In comparison to chromatographic methods, the main advantages of electrochemical methods are its cheaper instrumentation, lower detection limit and minimal or no sample preparation.


Author(s):  
Xiao-Hui Chen ◽  
Lei Liu ◽  
Jinbo Li ◽  
Fayun Zhang

Abstract Al7075–Ti–Y natural composites were prepared by using a combination of ultrasonic vibration and casting. The effects of titanium (Ti) and yttrium (Y) on the nucleation of primary α-Al were studied and the influencing mechanism of Y on the TiAl3 formation was analysed. Furthermore, a reaction kinetics model of TiAl3 under ultrasonic vibration was established. The results showed that the uniformly distributed TiAl3 and Al3Y nano-particles resulted in grain refinement. Y changed the morphology of TiAl3 and the appearance of corrosion pits was related to the fact that Y was dissolved within the TiAl3 structure to form Ti(Al,Y)3. The established model revealed that ultrasonic vibration significantly promoted the formation of TiAl3, and that ultrasonic time was the main factor affecting its growth.


Author(s):  
G Asmoro ◽  
E Surojo ◽  
Dody Ariawan ◽  
N Muhayat ◽  
W W Raharjo
Keyword(s):  

2001 ◽  
Vol 703 ◽  
Author(s):  
K. Chattopadhyay ◽  
V. Bhattacharya ◽  
A. P. Tsai

ABSTRACTNanodispersed lead in metallic and amorphous matrices was synthesized by rapid solidification processing. The optimum microstructure was tailored to avoid percolation of the particles. With these embedded particles it is possible to study quantitatively the effect of size on the superconducting transition temperature by carrying out quantitative microstructural characterization and magnetic measurements. Our results suggest the role of the matrices in enhancement or depression of superconducting transition temperature of lead. The origin of this difference in behavior with respect to different matrices and sizes is discussed.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 264 ◽  
Author(s):  
Aneta D. Petelska ◽  
Katarzyna Kazimierska-Drobny ◽  
Katarzyna Janicka ◽  
Tomasz Majewski ◽  
Wiesław Urbaniak

Some solid lubricants are characterized by a layered structure with weak (van der Waals) inter-interlayer forces which allow for easy, low-strength shearing. Solid lubricants in natural lubrication are characterized by phospholipid bilayers in the articular joints and phospholipid lamellar phases in synovial fluid. The influence of the acid–base properties of the phospholipid bilayer on the wettability and properties of the surface have been explained by studying the interfacial tension of spherical lipid bilayers based on a model membrane. In this paper, we show that the phospholipid multi-bilayer can act as an effective solid lubricant in every aspect, ranging from a ‘corrosion inhibitor’ in the stomach to a load-bearing lubricant in bovine joints. We present evidence of the outstanding performance of phospholipids and argue that this is due to their chemical inertness and hydrophilic–hydrophobic structure, which makes them amphoteric and provides them with the ability to form lamellar structures that can facilitate functional sliding. Moreover, the friction coefficient can significantly change for a given phospholipid bilayer so it leads to a lamellar-repulsive mechanism under highly charged conditions. After this, it is quickly transformed to result in stable low-friction conditions.


2014 ◽  
Vol 984-985 ◽  
pp. 15-24 ◽  
Author(s):  
S. Srikiran ◽  
K. Ramji ◽  
B. Satyanarayana

The generation of heat during machining at the cutting zone adversely affects the surface finish and tool life. The heat at the cutting zone, which plays a negative role due to poor thermal conductivity, resistance to wear, high strength at high temperatures and chemical degradation can be overcome by the use of proper lubrication. Advancements in the field of tribology have led to the use of solid lubricants replacing the conventional flood coolants. This work involves the use of nanoparticulate graphite powder as a lubricant in turning operations whose performance is judged in terms of cutting forces, tool temperature and surface finish of the work piece. The experimentation revealed the increase in cutting forces and the tool temperature when the solid lubricant used is decreased in particle size. The surface finish deteriorated with the decrease in particle size of the lubricant in the nanoregime.Keywords-Turning, Solid lubricant, Graphite, Minimum Quantity Lubrication, nano–particles,Weight percentage,Frictioncoefficient.


2011 ◽  
Vol 337 ◽  
pp. 526-531 ◽  
Author(s):  
Chang Hua Du ◽  
Zhen Kang Li ◽  
Bin Liu ◽  
Chun Tian Li

By the method of adding MNP (micron or nano particles) into general solder, the composite electronic solder can be prepared, due to its role of solution or dispersion strengthening, and can improve the thermostable fatigue and creep properties of solder joint, it is also usually named as RCS (reinforced composite solder).Based on researchful analysis of RCS, such as metal particles, particles for high hardness, particles for low expansion coefficient, rare-earth particles and low aggregated particle, and of their reinforced mechanism, the technical requirements of RCS is found, it is also analyzed problems and application prospects of RCS.


2016 ◽  
Vol 18 (7) ◽  
pp. 5499-5508 ◽  
Author(s):  
Venkateshwar Rao Dugyala ◽  
Jyothi Sri Muthukuru ◽  
Ethayaraja Mani ◽  
Madivala G. Basavaraj

The dynamic surface tension measurements are used to elucidate the contribution of electrostatic interaction energy barriers for the adsorption of nano-particles to the interfaces.


2016 ◽  
Vol 30 (5) ◽  
pp. 1177-1186 ◽  
Author(s):  
Safia Anjum ◽  
Hafsa Saleem ◽  
Khalid Rasheed ◽  
Rehana Zia ◽  
Saira Riaz ◽  
...  

Author(s):  
R. Amitkumar ◽  
Kanu Priya Jhanji ◽  
P.S. Venkatanarayanan ◽  
M.Joel Soris ◽  
Nishanth Srikanth

Use of composite laminates is found in various applications such as aircraft and automotive, sports, rocket parts and civil structures. Resin system of the polymer composites enacts a crucial role of binding the reinforcements properly to provide good mechanical properties. The presence of any kind of filler alters the properties of resin system which in turn also alters the mechanical behaviour of composite laminate. In the present work an attempt has been made to enhance the mechanical performance of glass fibre epoxy composites by embedding nano calcium carbonate particles in resin system. These particles were added in different weight fractions like 1, 3 and 5% and the response of GFRP nano composites were recorded under flexural and shear loads. Composite laminates with 3% wt. of nano particles have shown considerable improvement among the other laminates.


Sign in / Sign up

Export Citation Format

Share Document