W15.399 Inhibition of annexin V-binding to endothelial cells- a novel mechanism in atherothrombosis

2004 ◽  
Vol 5 (1) ◽  
pp. 92
Author(s):  
A CEDERHOLM
Keyword(s):  
Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3372 ◽  
Author(s):  
Yan-Hui Shen ◽  
Li-Ying Wang ◽  
Bao-Bao Zhang ◽  
Qi-Ming Hu ◽  
Pu Wang ◽  
...  

Ethyl rosmarinate (RAE) is one of the active constituents from Clinopodium chinense (Benth.) O. Kuntze, which is used for diabetic treatment in Chinese folk medicine. In this study, we investigated the protective effect of RAE on high glucose-induced injury in endothelial cells and explored its underlying mechanisms. Our results showed that both RAE and rosmarinic acid (RA) increased cell viability, decreased the production of reactive oxygen species (ROS), and attenuated high glucose-induced endothelial cells apoptosis in a dose-dependent manner, as evidenced by Hochest staining, Annexin V–FITC/PI double staining, and caspase-3 activity. RAE and RA both elevated Bcl-2 expression and reduced Bax expression, according to Western blot. We also found that LY294002 (phosphatidylinositol 3-kinase, or PI3K inhibitor) weakened the protective effect of RAE. In addition, PDTC (nuclear factor-κB, or NF-κB inhibitor) and SP600125 (c-Jun N-terminal kinase, or JNK inhibitor) could inhibit the apoptosis in endothelial cells caused by high glucose. Further, we demonstrated that RAE activated Akt, and the molecular docking analysis predicted that RAE showed more affinity with Akt than RA. Moreover, we found that RAE inhibited the activation of NF-κB and JNK. These results suggested that RAE protected endothelial cells from high glucose-induced apoptosis by alleviating reactive oxygen species (ROS) generation, and regulating the PI3K/Akt/Bcl-2 pathway, the NF-κB pathway, and the JNK pathway. In general, RAE showed greater potency than RA equivalent.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1293-1300 ◽  
Author(s):  
Annamaria B. Manodori ◽  
Gilda A. Barabino ◽  
Bertram H. Lubin ◽  
Frans A. Kuypers

Phospholipid asymmetry is well maintained in erythrocyte (RBC) membranes with phosphatidylserine (PS) exclusively present in the inner leaflet. The appearance of PS on the surface of the cell can have major physiologic consequences, including increased cell-cell interactions. Because increased adherence of PS-exposing RBCs to endothelial cells (ECs) may be pathologically important in hemoglobinopathies such as sickle cell disease and thalassemia, we studied the role of PS exposure in calcium ionophore-treated normal RBC adherence to human umbilical vein endothelial cell (HUVEC) monolayers. When HUVEC monolayers were incubated with these PS-exposing RBCs, the ECs retracted and the RBCs adhered primarily in the gaps opened between the ECs. A linear correlation was found between the number of PS-exposing RBCs in the population and the number of adhering RBCs to the monolayer. Pretreatment of RBCs with annexin V significantly decreased adherence by shielding PS on the RBCs. Similarly, PS-containing lipid vesicles decreased RBC binding by competing for the PS binding sites in the monolayer. PS-exposing RBCs and PS-containing lipid vesicles adhered to immobilized thrombospondin (TSP) and matrix TSP, respectively, and adherence of PS-exposing RBCs to EC monolayers was reduced by antibodies to TSP and to its EC receptor, vβ3. Together, these results indicate a role for PS and matrix TSP in the adherence of PS-exposing RBCs to EC monolayers, and suggest an important contribution of PS-exposing RBCs in pathologies with reported vascular damage, such as sickle cell anemia.


2014 ◽  
Vol 92 (12) ◽  
pp. 993-999 ◽  
Author(s):  
Jinsun Park ◽  
Jaeho Pyee ◽  
Heonyong Park

Pinosylvin is a known functional compound of the Pinus species. Pinosylvin at low concentrations (∼pmol/L) was reported to promote cell proliferation in endothelial cells. However, this study found that pinosylvin at a high concentration (100 μmol/L) induces cell death in bovine aortic endothelial cells. Therefore, we examined how pinosylvin was associated with apoptosis, autophagy, and necrosis. Pinosylvin at a high concentration appeared to promote caspase-3 activation, nuclear condensation, and the “flip-flop” of phosphatidylserine, indicating that pinosylvin induces apoptosis. However, based on flow cytometry data obtained from double-staining with annexin V and propidium iodide, pinosylvin was shown to inhibit necrosis, a postapoptotic process. Pinosylvin induced LC3 conversion from LC3-I to LC3-II and p62 degradation, which are important indicators of autophagy. In addition, AMP-activated protein kinase (AMPK) appeared to be activated by pinosylvin, and an AMPK inhibitor was markedly shown to reduce the LC3 conversion. The inhibitory effect of an AMPK inhibitor was reversed by pinosylvin. These results suggest that pinosylvin induces autophagy via AMPK activation. Further, necrosis was found to be promoted by an autophagy inhibitor and then restored by pinosylvin, while the caspase-3 inhibitor had no effect on necrosis. These findings indicate that pinosylvin-induced autophagy blocks necrotic progress in endothelial cells.


1994 ◽  
Vol 302 (1) ◽  
pp. 305-312 ◽  
Author(s):  
W L van Heerde ◽  
S Poort ◽  
C van 't Veer ◽  
C P M Reutelingsperger ◽  
P G de Groot

Annexin V binds with high affinity to procoagulant phospholipid vesicles and thereby inhibits the procoagulant reactions catalysed by these surfaces in vitro. In vivo, vascular endothelial cells are known to catalyse the formation of thrombin by the expression of binding sites at which procoagulant complexes can assemble. Here, we have studied the binding capacity of recombinant annexin V (rANV) to quiescent, phorbol 12-myristate 13-acetate (PMA)- and tumour necrosis factor alpha (TNF-alpha)-stimulated cultured human umbilical-vein endothelial cells (HUVEC). The dissociation constant (Kd) was 15.5 +/- 3.3 nM and the number of binding sites was 8.8 (+/- 3.9) x 10(6)/cell. These binding parameters did not change significantly during a 30 h incubation period with PMA or TNF-alpha. rANV inhibited HUVEC-mediated factor Xa formation via the extrinsic as well as the intrinsic route. Activation of factor X by the tissue factor-factor VII-factor X complex and tenase complex was inhibited with IC50 values of 43 +/- 30 nM and 33 +/- 24 nM respectively. Endothelial-cell-mediated generation of thrombin by the prothrombinase complex was inhibited by rANV with an IC50 of 16 +/- 12 nM. Preincubation of rANV with the endothelial cells did not significantly influence the IC50 values. These results show that rANV binds to the same extent to quiescent, PMA- and TNF-stimulated HUVEC, and, as a result of this binding, rANV efficiently inhibits endothelial-cell-mediated thrombin formation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 372-372
Author(s):  
Jialan Shi ◽  
Dessislava N. Nikova ◽  
Gary E. Gilbert

Abstract Abstract 372 The dependence of procoagulant activity on phosphatidylserine (PS) has been recognized for at least four decades but the location of physiologically relevant membranes with PS exposure remains uncertain. PS is exposed on apoptotic cells and cell microparticles but in vitro and in vivo studies have failed to demonstrate a clear relationship of microparticles or apoptotic cells to fibrin deposition. Exposure of endothelial cells to stimulants or toxins leads to retraction of cell margins, mounding of the central cell, and extension of filopodia. We have also found that cell stress also leads to limited, focal PS exposure. Furthermore, we found that binding sites for lactadherin, a PS-binding protein that shares homology with factor VIII and factor V, are concentrated on convex surfaces such as filopodia. In this study we ask whether the limited, focal PS exposure on stressed human umbilical vein endothelial cells is sufficient to support prothrombinase complex assembly and whether the prothrombinase complex assembly is restricted to the convex membrane features that bind lactadherin. We allowed Human Umbilical Vein Endothelial Cells (HUVEC) to grow to confluent monolayers prior to exposure to TNF-α, 10 ng/ml, for 5–24 hours. PS exposure was detected by simultaneous staining using 10 nM lactadherin–Alexa 488 and annexin V–Cy 3.18, both exhibiting high affinity for PS. Stressed cells withdrew from their prior borders, leaving residual fibrils connected to original attachment points. In addition, they extended filopodia that were up to several cell diameters in length. Confocal microscopy demonstrated focal staining of filopodia, fibrils and cell margins with lactadherin and patches near the nucleus with annexin A5. We asked whether the selective binding might be determined by the membrane topology. To mimic the curvature of a cell membrane we prepared nano-fabricated silica substrates with ridge radii of 10 nm. The AFM topographic and fluorescent images of synthetic membrane bilayers supported by the substrates showed that, over a PS content of 4–15%, lactadherin preferentially binds to the convex nano-ridges with a ridge: valley staining ratio >80:1, while annexin V selectively binds the concave areas of the nano-trenches with a ridge. Combined fluorescence/AFM imaging of TNF-α treated HUVEC's, demonstrated that the new thin filaments staining with lactadherin had radii of curvature of approx. 12 nm, similar to the ridges of our synthetic bilayers. We asked whether factor Va and factor Xa share preference for convex surfaces, analogous to lactadherin. Supported membranes of 4% PS had preferential ridge staining by factor Va-fluorescein-maleimide with a ridge/valley ratio > 10/1. Co-staining with factor Va and factor Xa-EGRck-biotin (complexed to Alexa 647-steptavidin) indicated that factor Va enhanced binding of factor Xa to ridges, thus the prothrombinase complex has highly preferential binding to convex ridges. TNF-α-treated endothelial cells bound factor Va, like lactadherin, selectively on filopodia and fibrils near the retracted edges of endothelial cells. Factor Xa also localized to these features in the presence of factor Va, indicating prothrombinase complex assembly. Stressed endothelial cells exhibited at least 8-fold higher support for thrombin production and prothrombinase activity. Prothrombinase activity was efficiently inhibited by lactadherin, demonstrating that the lactadherin-binding sites were the functional sites for prothrombinase activity. Together, these data indicate that stressed endothelial cells can support the prothrombinase complex and that prothrombinase activity is compartmentalized near the periphery of the cell and in the intracellular area through binding sites on highly convex membrane features with exposed PS. We have hypothesized that this compartment of procoagulant activity is relatively protected from anti-coagulant proteins that are localized elsewhere on the stimulated/stressed endothelial cell. Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 100 (10) ◽  
pp. 663-669 ◽  
Author(s):  
Bettina Toth ◽  
Susanne Liebhardt ◽  
Kerstin Steinig ◽  
Nina Ditsch ◽  
Andreas Rank ◽  
...  

SummaryIn the mid 1800s Trousseau observed cancer-associated thrombosis, of which the underlying pathogenesis still remains unknown. We performed a prospective study on platelet-derived microparticles (PMP) and their procoagulant potential in breast cancer patients. Fifty-eight breast cancer patients and 13 women with benign breast tumors were included in the study. Microparticles (MP) were examined by electron microscopy and FACS analysis using labels for annexinV (total numbers), CD61 (PMP), CD62P and CD63 (activated platelets), CD62E (endothelial cells), CD45 (leukocytes) as well as CD142 (tissue factor). Prothrombin fragment 1+2 (F1+2) and thrombin generation were measured as blood coagulation markers. Numbers of annexin V+-MP were highest in breast cancer patients with larger tumor size (T2; median = 5,637×106/l; range = 2,852–8,613) and patients with distant metastases (M1; median = 6,102×106/l; range = 3,350–7,445), and differed significantly from patients with insitu tumor (Tis; median = 3,220×106/l; range = 2,277–4,124; p = 0.019), small tumor size (T1; median = 3,281×106/l; range 2,356–4,861; p = 0.043) and women with benign breast tumor (median = 4,108×106/l; range = 2,530–4,874; p = 0.040). A total of 82.3% of MP were from platelets,14.6 % from endothelial cells and 0.3% from leukocytes. Less than 10% of PMP showed degranulation markers. Larger tumor size (T2) and metastases correlated with high counts of PMP and with highest F1+2 levels. Since prothrombin levels and thrombin generation did not parallel MP levels, we speculate that MP act in the microenvironment of tumor tissue and may thus not be an exclusive parameter reflecting in-vivo procoagulant activity.


2012 ◽  
Vol 302 (4) ◽  
pp. C644-C651 ◽  
Author(s):  
Oliver Borst ◽  
Majed Abed ◽  
Ioana Alesutan ◽  
Syeda T. Towhid ◽  
Syed M. Qadri ◽  
...  

Suicidal death of erythrocytes, or eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca2+activity, which may result from treatment with the Ca2+ionophore ionomycin or from energy depletion by removal of glucose. The present study tested the hypothesis that phosphatidylserine exposure at the erythrocyte surface fosters adherence to endothelial cells of the vascular wall under flow conditions at arterial shear rates and that binding of eryptotic cells to endothelial cells is mediated by the transmembrane CXC chemokine ligand 16 (CXCL16). To this end, human erythrocytes were exposed to energy depletion (for 48 h) or treated with the Ca2+ionophore ionomycin (1 μM for 30 min). Phosphatidylserine exposure was quantified utilizing annexin-V binding, cell volume was estimated from forward scatter in FACS analysis, and erythrocyte adhesion to human vascular endothelial cells (HUVEC) was determined in a flow chamber model. As a result, both, ionomycin and glucose depletion, triggered eryptosis and enhanced the percentage of erythrocytes adhering to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly blunted in the presence of erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml), of a neutralizing antibody against endothelial CXCL16 (4 μg/ml), and following silencing of endothelial CXCL16 with small interfering RNA. The present observations demonstrate that eryptotic erythrocytes adhere to endothelial cells of the vascular wall in part by interaction of phosphatidylserine exposed at the erythrocyte surface with endothelial CXCL16.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Manuelle Debunne ◽  
Christophe Portal ◽  
Bruno Delest ◽  
Ebba Brakenhielm ◽  
Françoise Lallemand ◽  
...  

Purpose. The aim of this paper is to develop new optical bioprobes for the imaging of apoptosis. Procedure. We developed quenched near-infrared probes which become fluorescent upon cleavage by caspase-3, the key regulatory enzyme of apoptosis. Results. Probes were shown to be selectively cleaved by recombinant caspase-3. Apoptosis of cultured endothelial cells was associated with an increased fluorescent signal for the cleaved probes, which colocalized with caspase-3 and was reduced by the addition of a caspase-3 inhibitor. Flow cytometry demonstrated a similar profile between the cleaved probes and annexin V. Ex vivo experiments showed that sections of hearts obtained from mice treated with the proapoptotic drug doxorubicin displayed an increase in the fluorescent signal for the cleaved probes, which was reduced by a caspase-3 inhibitor. Conclusion. We demonstrated the capacity of these novel probes to detect apoptosis by optical imaging in vitro and ex vivo.


2013 ◽  
Vol 304 (4) ◽  
pp. L230-L239 ◽  
Author(s):  
Elena Gammella ◽  
Caroline Leuenberger ◽  
Max Gassmann ◽  
Louise Ostergaard

Endothelial cell dysfunction is a common event to several pathologies including pulmonary hypertension, which is often associated with hypoxia. As the endothelium plays an essential role in regulating the dynamic interaction between pulmonary vasodilatation and vasoconstriction, this cell type is fundamental in the development of vascular remodeling and increased vascular resistance. We investigated the protective effects of sildenafil, a phosphodiesterase type 5 inhibitor, given in combination with erythropoietin (Epo), as it has been demonstrated that both drugs have antiapoptotic effects on several cell types. Specifically, we examined the viability and angiogenic properties of rat pulmonary artery endothelial cells upon exposure to either 21% or 1% oxygen, in presence of sildenafil (1 and 100 nM) and Epo (5 and 20 U/ml) alone or in combination (1 nM and 20 U/ml). Cell proliferation and viability were analyzed by Trypan blue staining, MTT assay, and Annexin V/propidium iodide stainings. In all assays, the ability of the combination treatment in improving cell viability was superior to that of either drug alone. The angiogenic properties were studied using a migration and a 3D collagen assay, and the results revealed increases in the migration potential of endothelial cells as well as the ability to form tube-like structures in response to sildenafil and the combination treatment. We therefore conclude that both drugs exert protective effects on endothelial cells on hypoxia and that sildenafil enhances the migratory and angiogenic properties, especially in hypoxic conditions. Furthermore, we present evidence of possible additive or synergistic effects of both drugs.


Sign in / Sign up

Export Citation Format

Share Document