Determination of the hardness and elastic modulus of low-k thin films and their barrier layer for microelectronic applications

2003 ◽  
Vol 70 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Lu Shen ◽  
Kaiyang Zeng ◽  
Yihua Wang ◽  
Babu Narayanan ◽  
Rakesh Kumar
2000 ◽  
Vol 612 ◽  
Author(s):  
Yuxiao Zeng ◽  
Linghui Chen ◽  
T. L. Alford

AbstractHSQ (hydrogen silsesquioxane) is one of the promising low-k materials used in VLSI technology as an intra-metal dielectric to reduce capacitance-related issues. Like any other dielectrics, the integration of HSQ in multilevel interconnect schemes has been of considerable importance. In this study, the compatibility of HSQ with different nitride barrier layers, such as PVD and CVD TiN, PVD TaN, and CVD W2N, has been investigated by using a variety of techniques. The refractory metal barriers, Ti and Ta, are also included for a comparison. The degradation of HSQ films indicates a strong underlying barrier layer dependence. With CVD nitrides or refractory metals as barrier, HSQ exhibits a better structural and property stability than that with PVD nitrides. The possible mechanisms have been discussed to account for these observations.


2012 ◽  
Author(s):  
Sean King ◽  
George A. Antonelli ◽  
Gheorghe Stan ◽  
Robert F. Cook ◽  
R. Sooryakumar

2002 ◽  
Vol 716 ◽  
Author(s):  
Joseph B. Vella ◽  
Alex A. Volinsky ◽  
Indira S. Adhihetty ◽  
N.V. Edwards ◽  
William W. Gerberich

AbstractThe capabilities of nanoindentation to characterize low-k organo silicate glass (OSG) thin films is explored as a relatively rapid and inexpensive metric of mechanical properties, adhesion strength, and fracture toughness. One method of decreasing the static dielectric constant of OSG interlayer dielectrics requires the introduction of porosity in the material which has a dramatic impact on its mechanical and toughness properties. Percolation theory is used to formulate a correlation between porosity and elastic modulus. Using cube corner diamond indentation and scratch testing fracture toughness calculations are also discussed.


2010 ◽  
Vol 42 (2) ◽  
pp. 166-174 ◽  
Author(s):  
A. Tricoteaux ◽  
G. Duarte ◽  
D. Chicot ◽  
E. Le Bourhis ◽  
E. Bemporad ◽  
...  

1986 ◽  
Vol 1 (4) ◽  
pp. 601-609 ◽  
Author(s):  
M.F. Doerner ◽  
W.D. Nix

Depth-sensing indentation instruments provide a means for studying the elastic and plastic properties of thin films. A method for obtaining hardness and Young's modulus from the data obtained from these types of instruments is described. Elastic displacements are determined from the data obtained during unloading of the indentation. Young's modulus can be calculated from these measurements. In addition, the elastic contribution to the total displacement can be removed in order to calculate hardness. Determination of the exact shape of the indenter at the tip is critical to the measurement of both hardness and elastic modulus for indentation depths less than a micron. Hardness is shown to depend on strain rate, especially when the hardness values are calculated from the data along the loading curves.


1999 ◽  
Vol 14 (5) ◽  
pp. 2152-2161 ◽  
Author(s):  
J. Menčík ◽  
E. Quandt

Elastic modulus of small specimens and thin films can be determined in bending tests using cantilever or three-point arrangement. The paper presents the basic formulae for these measurements, analyzes the errors which can arise, and shows how they can be reduced. The use of the method is illustrated on glass, silicon, and glass coated with TbDyFe.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
S. P. Sapers ◽  
R. Clark ◽  
P. Somerville

OCLI is a leading manufacturer of thin films for optical and thermal control applications. The determination of thin film and substrate topography can be a powerful way to obtain information for deposition process design and control, and about the final thin film device properties. At OCLI we use a scanning probe microscope (SPM) in the analytical lab to obtain qualitative and quantitative data about thin film and substrate surfaces for applications in production and research and development. This manufacturing environment requires a rapid response, and a large degree of flexibility, which poses special challenges for this emerging technology. The types of information the SPM provides can be broken into three categories:(1)Imaging of surface topography for visualization purposes, especially for samples that are not SEM compatible due to size or material constraints;(2)Examination of sample surface features to make physical measurements such as surface roughness, lateral feature spacing, grain size, and surface area;(3)Determination of physical properties such as surface compliance, i.e. “hardness”, surface frictional forces, surface electrical properties.


Sign in / Sign up

Export Citation Format

Share Document