Small torque

2020 ◽  
Vol 247 (3297) ◽  
pp. 56
Keyword(s):  

On evaporation at low temperatures of a benzene solution of palmitic or stearic acid on the surface of water an apparently solid film is left. The experiments of I. Langmuir and N. K. Adam have shown that these films are unimolecular in character, and inasmuch that they possess a fairly well defined melting point, although this varies with the acidity of the underlying solution, we may regard these films as unimolecular sheets of orientated solid acid. Anyone who examines these films even superficially cannot fail to notice their exceptional strength, all the more extraordinary when we consider their extreme thinness. Whilst the compressibility of such films, a property which can be readily determined by examination of the slope of the force area curve obtained with the well-known Langmuir trough apparatus, does not present any unusual features, being of the order anticipated for a hydrocarbon, yet we may expect that the coefficient of rigidity will be unexpectedly high. It seemed a matter of some importance to attempt to measure the rigidity of such films, by applying a suitable torque and determining the displacements effected, a method suggested to us by Prof. G. I. Taylor. In our preliminary experiments we endeavoured to employ a simple static method of placing a disc at the centre of a large circular film and applying torsion by means of a torsion head and wire on the disc to which a mirror is attached. We have to express our thanks to Prof. G. I. Taylor for the loan of an excellent and finely-calibrated head for this purpose. After numerous attempts with various modifications of the method we were reluctantly compelled to abandon it. The results were invariably the same; on applying a small torque to the disc no motion was visible on the image of the mirror attached to the disc. If the torque be increased the film is ruptured and the disc breaks loose and slips, generally forcing itself entirely from attachment to the film. Even with discs coated with wax or corrugated and milled on the circular edge no better results were obtained. Evidently the grip on the disc being only of one molecule thick is not sufficient to hold the slightest movement on the part of the shearing disc.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mingying Huo ◽  
He Liao ◽  
Yanfang Liu ◽  
Naiming Qi

Displaced solar orbits for spacecraft propelled by electric sails are investigated. Since the propulsive thrust is induced by the sail attitude, the orbital and attitude dynamics of electric-sail-based spacecraft are coupled and required to be investigated together. However, the coupled dynamics and control of electric sails have not been discussed in most published literatures. In this paper, the equilibrium point of the coupled dynamical system in displaced orbit is obtained, and its stability is analyzed through a linearization. The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit system. Numerical simulations show that the proposed strategy can control the coupled system and a small torque can stabilize both the attitude and orbit. In order to generate the control force and torque, the voltage distribution problem is studied in an optimal framework. The numerical results show that the control force and torque of electric sail can be realized by adjusting the voltage distribution of charged tethers.


2020 ◽  
Vol 248 (3308) ◽  
pp. 55
Keyword(s):  

2009 ◽  
Vol 79 (3) ◽  
pp. 551-557 ◽  
Author(s):  
Michael Chung ◽  
Robert J. Nikolai ◽  
Ki Beom Kim ◽  
Donald R. Oliver

Abstract Objective: To examine the influence of third-order torque on kinetic friction in sliding mechanics involving active and passive self-ligating brackets. Materials and Methods: Wire-slot frictional forces were quantified and compared across five sets of brackets and tubes within a simulated posterior dental segment with −15°, −10°, −5°, 0°, +5°, +10°, and +15° of torque placed in the second-premolar bracket; a working archwire was pulled through the slots. Results: Increasing the torque from 0° to ±15° produced significant increases in frictional resistance with all five sets of brackets and tubes. At 0° and ±5° of torque, generally less friction was created within the passive than within the active self-ligating bracket sets, and the conventional bracket sets with elastomeric ligation generated the most friction. At ±10° of torque, apparently with wire-slot clearance eliminated, all bracket-and-tube sets displayed similar resistances, with one exception at +10°. At ±15° of torque, one passive set and one active set produced significantly larger frictional resistances than the other three sets. Conclusions: Third-order torque in posterior dental segments can generate frictional resistance during anterior retraction with the archwire sliding through self-ligating bracket slots. With small torque angles, friction is less with passive than with active self-ligating brackets, but bracket design is a factor. Frictional forces are substantial, regardless of ligation if the wire-slot torque exceeds the third-order clearance.


1996 ◽  
Vol 23 (6) ◽  
pp. 1190-1198 ◽  
Author(s):  
Naceur Eddine Hannachi ◽  
Bernard Fouré

This paper proposes a method to calculate the torsional stiffness of reinforced concrete beams with section of any shape, in a cracked state due to bending, subjected to small torque (shape stability problems). The simultaneous influence of the various parameters (shape of the section, state of cracking, longitudinal reinforcement) is taken into account. A series of laboratory tests on beams with hollow, massive, or double-tee thin cross sections gives data to determine semi-empirically some parameters. Calculated and experimental stiffnesses are in rather good agreement. The proposed method fills in a gap in the nonlinear calculation of reinforced concrete. Key words: reinforced concrete, flexural cracking, torsional stiffness, calculation method, nonlinear elasticity, stability.


2018 ◽  
Vol 67 (8) ◽  
pp. 6838-6850 ◽  
Author(s):  
Yimin Chen ◽  
Corwin Stout ◽  
Adit Joshi ◽  
Ming L. Kuang ◽  
Junmin Wang

2012 ◽  
Vol 163 ◽  
pp. 176-179 ◽  
Author(s):  
Xin Jie Wang ◽  
Liang Wen Wang ◽  
An Sheng Li ◽  
Chuan Peng Wang

In order to reducing motors energy consumption, the problem about motion function, which has torque feature (AV) m small, is discussed in this paper. Conventional functions and small torque moment function are used to control mass center motion of robot ZQROT-I respectively. In the process of robot running the straight gait , motion performance of the robot is analyzed by ADAMS. Analysis result indicates that function controlling mass motion of robot with small torque feature has significant meaning for saving working energy of robot.


2014 ◽  
Vol 986-987 ◽  
pp. 1031-1034
Author(s):  
Xiao Lei Zhang ◽  
Kui Hua Wu ◽  
Jian Wang ◽  
Wei Sun ◽  
Kui Zhong Wu ◽  
...  

Because torque ripple disturbance can be created when the brushless dc motor is communicating, In this paper, from two aspects of energy feedback and the torque ripple, H/L - PWM - ON control strategy is analyzed .And a simulation system is set up. Through the trials, it shows that H/L - PWM - ON strategy can efficiently complete the energy feedback, has small torque ripple, and fully proves the feasibility and practicability of this control strategy.


2019 ◽  
Vol 4 (2) ◽  
pp. 202-209
Author(s):  
Adhy Febry Anto ◽  
Totok Sukardiyono

Indonesia has the second longest coastline in the world. On the other hand, Indonesia is the second largest contributor to marine waste in the world. Coastal cleanliness needs to be maintained so that it becomes an attraction for tourism and to protect the marine ecosystem. This article describes the results of testing devices that can be used to clean beaches. Research carried out by the development method. An autonomous beach garbage cleaning rover is a beach trash sweeper robot equipped with GPS, compass, telemetry, ArduPilot as a navigation and communication system when the robot operates. This robot moves using 2 DC motors with torque of ± 4 kg. The robot is also equipped with a conveyor that functions to sweep plastic debris on the beach. The test results show that the robot can go according to the specified path, according to the coordinates entered (100% accuracy) and be able to transport plastic waste. This is because the motor used has a small torque, so it is not able to lift large objects. The next robot development can be done in terms of: identifying the capacity of robots to accommodate various types of waste, testing the ability of robots to clean waste, the use of solar cells, and trajectory management systems.


Sign in / Sign up

Export Citation Format

Share Document