scholarly journals 3521 Distinct single cell gene expression in peripheral blood monocytes correlates with treatment response groups to TNF-alpha inhibition in rheumatoid arthritis

2019 ◽  
Vol 3 (s1) ◽  
pp. 8-9
Author(s):  
Theresa Wampler Muskardin ◽  
Zhongbo Jin ◽  
Jessica M. Dorschner ◽  
Yogita Ghodke-Puranik ◽  
Timothy Niewold

OBJECTIVES/SPECIFIC AIMS: The cellular mechanisms that underlie the IFNβ/α ratio that predicts response are not known. Effects of IFN on single immune cells may be masked in whole blood or mixed cell populations. By studying the effect of IFNβ/α activity ratio on individual monocytes, we can determine the functional impact of the IFN ratio and suggest the cellular mechanisms that underlie response/non-response to TNFi therapy in RA. METHODS/STUDY POPULATION: We used single cell analysis to investigate whether monocyte gene expression differs significantly between RA patients according to their pre-TNFi serum IFN-β/α ratio. Single classical (CL) and non-classical (NC) blood-derived monocytes were isolated from 15 seropositive RA subjects prior to biologic therapy. Subjects were grouped by pre-TNFi serum IFN-β/α ratio into two groups, those with a high IFN-β/α ratio (≥1.3, n = 6) and those with a low IFN-β/α ratio (<1.3, n = 9). 87 target genes were analyzed. Genes that varied significantly between the groups by categorical analyses were tested in multivariate logistic regression models. RESULTS/ANTICIPATED RESULTS: Every participant was seropositive for rheumatoid factor and antibodies to cyclic citrullinated peptide. Among the participants in the groups, there were no significant differences in age or DAS scores (P>0.05). The treatments were comparable and none were being treated with biologic therapy. There were striking differences in monocyte gene expression between patients with pre-treatment blood IFNβ/α activity <1.3 and ≥1.3. Expression of (1) key type I IFN pathway genes (JAK1, STAT2, IFIT2, IFIH1, PRDM1); (2) IL12; (3) CD36; and (4) CTLA4 were the strongest differentiators between groups (p<0.0001 for each, corrected for multiple comparisons). DISCUSSION/SIGNIFICANCE OF IMPACT: In this study we were able to measure gene expression in single monocytes from seropositive RA patients prior to biologic treatment. Within-cell co-expression patterns demonstrate biological differences in monocytes of RA patients with an IFNβ/α ≥1.3, the ratio of type I IFNs which predicts non-response to TNFi. The data suggest that there may be differential IFN production and pathway activation in patients who do not respond to TNFi. The increased expression of CD36 in monocytes from RA patients with high IFN β/α activity may be a reflection of increased “foam cells” in the inflamed tissue of patients who do not respond to TNFi. Enrichment of CTLA4 in those with high serum IFNβ/α suggests that CTLA4-Ig may be less likely to be an effective alternative for someone who is not likely to respond to TNFi. Current work includes determining whether the peripheral blood findings reflect altered cellular composition, type I IFN production and signaling in the synovium. Significance: This work will help to develop a more individualized approach to therapy in RA and determine an immunological basis of response/non-response to TNFi.

2021 ◽  
Author(s):  
Douglas Arneson ◽  
Guanglin Zhang ◽  
In Sook Ahn ◽  
Zhe Ying ◽  
Graciel Diamante ◽  
...  

Abstract The etiology of mild traumatic brain injury (mTBI) remains elusive due to the tissue and cellular heterogeneity of the affected brain regions that underlie cognitive impairments and subsequent neurological disorders. This complexity is further exacerbated by disrupted circuits within and between cell populations across brain regions and the periphery, which occur at different timescales and in spatial domains. We profiled three tissues (hippocampus, frontal cortex, and blood leukocytes) at the acute (24hr) and chronic (7days) phases of mTBI at single cell resolution and demonstrated that the coordinated gene expression patterns across cell types were disrupted and re-organized by TBI at different timescales with distinct regional and cellular patterns. Gene expression-based network modeling identified astrocytes as a key regulator of the cell-cell coordination following mTBI in both hippocampus and frontal cortex across timepoints, and mt-Rnr2, which encodes the mitochondrial peptide humanin, as a potential target for intervention based on its broad regional and dynamic dysregulation following mTBI. Treatment of a murine mTBI model with humanin reversed cognitive impairment caused by mTBI through the restoration of metabolic pathways within astrocytes. Our results offer a systems-level understanding of the dynamic and spatial regulation of gene programs by mTBI and pinpoint key target genes, pathways, and cell circuits that are amenable to therapeutics.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Yuanyuan Li ◽  
Ping Luo ◽  
Yi Lu ◽  
Fang-Xiang Wu

Abstract Background With the development of the technology of single-cell sequence, revealing homogeneity and heterogeneity between cells has become a new area of computational systems biology research. However, the clustering of cell types becomes more complex with the mutual penetration between different types of cells and the instability of gene expression. One way of overcoming this problem is to group similar, related single cells together by the means of various clustering analysis methods. Although some methods such as spectral clustering can do well in the identification of cell types, they only consider the similarities between cells and ignore the influence of dissimilarities on clustering results. This methodology may limit the performance of most of the conventional clustering algorithms for the identification of clusters, it needs to develop special methods for high-dimensional sparse categorical data. Results Inspired by the phenomenon that same type cells have similar gene expression patterns, but different types of cells evoke dissimilar gene expression patterns, we improve the existing spectral clustering method for clustering single-cell data that is based on both similarities and dissimilarities between cells. The method first measures the similarity/dissimilarity among cells, then constructs the incidence matrix by fusing similarity matrix with dissimilarity matrix, and, finally, uses the eigenvalues of the incidence matrix to perform dimensionality reduction and employs the K-means algorithm in the low dimensional space to achieve clustering. The proposed improved spectral clustering method is compared with the conventional spectral clustering method in recognizing cell types on several real single-cell RNA-seq datasets. Conclusions In summary, we show that adding intercellular dissimilarity can effectively improve accuracy and achieve robustness and that improved spectral clustering method outperforms the traditional spectral clustering method in grouping cells.


iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102357
Author(s):  
Brenda Morsey ◽  
Meng Niu ◽  
Shetty Ravi Dyavar ◽  
Courtney V. Fletcher ◽  
Benjamin G. Lamberty ◽  
...  

2021 ◽  
Author(s):  
Pengcheng Ma ◽  
Xingyan Liu ◽  
Huimin Liu ◽  
Zaoxu Xu ◽  
Xiangning Ding ◽  
...  

Abstract Vertebrate evolution was accompanied with two rounds of whole genome duplication followed by functional divergence in terms of regulatory circuits and gene expression patterns. As a basal and slow-evolving chordate species, amphioxus is an ideal paradigm for exploring the origin and evolution of vertebrates. Single cell sequencing has been widely employed to construct the developmental cell atlas of several key species of vertebrates (human, mouse, zebrafish and frog) and tunicate (sea squirts). Here, we performed single-nucleus RNA sequencing (snRNA-seq) and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) for different stages of amphioxus (covering embryogenesis and adult tissues). With the datasets generated we constructed the developmental tree for amphioxus cell fate commitment and lineage specification, and revealed the underlying key regulators and genetic regulatory networks. The generated data were integrated into an online platform, AmphioxusAtlas, for public access at http://120.79.46.200:81/AmphioxusAtlas.


Author(s):  
Jayashree Sahana ◽  
Thomas J. Corydon ◽  
Markus Wehland ◽  
Marcus Krüger ◽  
Sascha Kopp ◽  
...  

In this study, we evaluated changes in focal adhesions (FAs) in two types of breast cancer cell (BCC) lines (differentiated MCF-7 and the triple-negative MDA-MB-231 cell line) exposed to simulated microgravity (s-μg) created by a random positioning machine (RPM) for 24 h. After exposure, the BCC changed their growth behavior and exhibited two phenotypes in RPM samples: one portion of the cells grew as a normal two-dimensional monolayer [adherent (AD) BCC], while the other portion formed three-dimensional (3D) multicellular spheroids (MCS). After 1 h and 30 min (MDA-MB-231) and 1 h 40 min (MCF-7), the MCS adhered completely to the slide flask bottom. After 2 h, MDA-MB-231 MCS cells started to migrate, and after 6 h, a large number of the cells had left the MCS and continued to grow in a scattered pattern, whereas MCF-7 cells were growing as a confluent monolayer after 6 h and 24 h. We investigated the genes associated with the cytoskeleton, the extracellular matrix and FAs. ACTB, TUBB, FN1, FAK1, and PXN gene expression patterns were not significantly changed in MDA-MB-231 cells, but we observed a down-regulation of LAMA3, ITGB1 mRNAs in AD cells and of ITGB1, TLN1 and VCL mRNAs in MDA-MB-231 MCS. RPM-exposed MCF-7 cells revealed a down-regulation in the gene expression of FAK1, PXN, TLN1, VCL and CDH1 in AD cells and PXN, TLN and CDH1 in MCS. An interaction analysis of the examined genes involved in 3D growth and adhesion indicated a central role of fibronectin, vinculin, and E-cadherin. Live cell imaging of eGFP-vinculin in MCF-7 cells confirmed these findings. β-catenin-transfected MCF-7 cells revealed a nuclear expression in 1g and RPM-AD cells. The target genes BCL9, MYC and JUN of the Wnt/β-catenin signaling pathway were differentially expressed in RPM-exposed MCF-7 cells. These findings suggest that vinculin and β-catenin are key mediators of BCC to form MCS during 24 h of RPM-exposure.


Author(s):  
Kenneth H. Hu ◽  
John P. Eichorst ◽  
Chris S. McGinnis ◽  
David M. Patterson ◽  
Eric D. Chow ◽  
...  

ABSTRACTSpatial transcriptomics seeks to integrate single-cell transcriptomic data within the 3-dimensional space of multicellular biology. Current methods use glass substrates pre-seeded with matrices of barcodes or fluorescence hybridization of a limited number of probes. We developed an alternative approach, called ‘ZipSeq’, that uses patterned illumination and photocaged oligonucleotides to serially print barcodes (Zipcodes) onto live cells within intact tissues, in real-time and with on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in-vitro wound healing, live lymph node sections and in a live tumor microenvironment (TME). In all cases, we discovered new gene expression patterns associated with histological structures. In the TME, this demonstrated a trajectory of myeloid and T cell differentiation, from periphery inward. A variation of ZipSeq efficiently scales to the level of single cells, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


2020 ◽  
Author(s):  
Juexin Wang ◽  
Anjun Ma ◽  
Yuzhou Chang ◽  
Jianting Gong ◽  
Yuexu Jiang ◽  
...  

ABSTRACTSingle-cell RNA-sequencing (scRNA-Seq) is widely used to reveal the heterogeneity and dynamics of tissues, organisms, and complex diseases, but its analyses still suffer from multiple grand challenges, including the sequencing sparsity and complex differential patterns in gene expression. We introduce the scGNN (single-cell graph neural network) to provide a hypothesis-free deep learning framework for scRNA-Seq analyses. This framework formulates and aggregates cell-cell relationships with graph neural networks and models heterogeneous gene expression patterns using a left-truncated mixture Gaussian model. scGNN integrates three iterative multi-modal autoencoders and outperforms existing tools for gene imputation and cell clustering on four benchmark scRNA-Seq datasets. In an Alzheimer’s disease study with 13,214 single nuclei from postmortem brain tissues, scGNN successfully illustrated disease-related neural development and the differential mechanism. scGNN provides an effective representation of gene expression and cell-cell relationships. It is also a novel and powerful framework that can be applied to scRNA-Seq analyses.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Fangyi Zhang ◽  
Xuefeng Lin ◽  
Xiaodong Yang ◽  
Guangjian Lu ◽  
Qunmei Zhang ◽  
...  

Abstract Increasing evidence has indicated that microRNAs (miRNAs) have essential roles in innate immune responses to various viral infections; however, the role of miRNAs in H1N1 influenza A virus (IAV) infection is still unclear. The present study aimed to elucidate the role and mechanism of miRNAs in IAV replication in vitro. Using a microarray assay, we analyzed the expression profiles of miRNAs in peripheral blood from IAV patients. It was found that miR-132-3p was significantly up-regulated in peripheral blood samples from IAV patients. It was also observed that IAV infection up-regulated the expression of miR-132-3p in a dose- and time-dependent manner. Subsequently, we investigated miR-132-3p function and found that up-regulation of miR-132-3p promoted IAV replication, whereas knockdown of miR-132-3p repressed replication. Meanwhile, overexpression of miR-132-3p could inhibit IAV triggered INF-α and INF-β production and IFN-stimulated gene (ISG) expression, including myxovirus protein A (MxA), 2′,5′-oligoadenylate synthetases (OAS), and double-stranded RNA-dependent protein kinase (PKR), while inhibition of miR-132-3p enhanced IAV triggered these effects. Of note, interferon regulatory factor 1 (IRF1), a well-known regulator of the type I IFN response, was identified as a direct target of miR-132-3p during HIN1 IAV infection. Furthermore, knockdown of IRF1 by si-IRF1 reversed the promoting effects of miR-132-3p inhibition on type I IFN response. Taken together, up-regulation of miR-132-3p promotes IAV replication by suppressing type I IFN response through its target gene IRF1, suggesting that miR-132-3p could represent a novel potential therapeutic target of IAV treatment.


2005 ◽  
Vol 16 (4) ◽  
pp. 1987-2002 ◽  
Author(s):  
Ulrich Valcourt ◽  
Marcin Kowanetz ◽  
Hideki Niimi ◽  
Carl-Henrik Heldin ◽  
Aristidis Moustakas

Epithelial-mesenchymal transition (EMT) contributes to normal tissue patterning and carcinoma invasiveness. We show that transforming growth factor (TGF)-β/activin members, but not bone morphogenetic protein (BMP) members, can induce EMT in normal human and mouse epithelial cells. EMT correlates with the ability of these ligands to induce growth arrest. Ectopic expression of all type I receptors of the TGF-β superfamily establishes that TGF-β but not BMP pathways can elicit EMT. Ectopic Smad2 or Smad3 together with Smad4 enhanced, whereas dominant-negative forms of Smad2, Smad3, or Smad4, and wild-type inhibitory Smad7, blocked TGF-β–induced EMT. Transcriptomic analysis of EMT kinetics identified novel TGF-β target genes with ligand-specific responses. Using a TGF-β type I receptor that cannot activate Smads nor induce EMT, we found that Smad signaling is critical for regulation of all tested gene targets during EMT. One such gene, Id2, whose expression is repressed by TGF-β1 but induced by BMP-7 is critical for regulation of at least one important myoepithelial marker, α-smooth muscle actin, during EMT. Thus, based on ligand-specific responsiveness and evolutionary conservation of the gene expression patterns, we begin deciphering a genetic network downstream of TGF-β and predict functional links to the control of cell proliferation and EMT.


Development ◽  
1998 ◽  
Vol 125 (3) ◽  
pp. 351-357 ◽  
Author(s):  
C. Hayes ◽  
J.M. Brown ◽  
M.F. Lyon ◽  
G.M. Morriss-Kay

The mouse mutant Doublefoot (Dbf) shows preaxial polydactyly of all four limbs. We have analysed limb development in this mutant with respect to morphogenesis, gene expression patterns and ectopic polarising activity. The results reveal a gain-of-function mutation at a locus that mediates pattern formation in the developing limb. Shh expression is identical with that of wild-type embryos, i.e. there is no ectopic expression. However, mesenchyme from the anterior aspects of Dbf/+ mutant limb buds, when transplanted to the anterior side of chick wing buds, induces duplication of the distal skeletal elements. Mid-distal mesenchymal transplants from early, but not later, Dbf/+ limb buds are also able to induce duplication. This demonstration of polarising activity in the absence of Shh expression identifies the gene at the Dbf locus as a new genetic component of the Shh signalling pathway, which (at least in its mutated form) is able to activate signal transduction independently of Shh. The mutant gene product is sufficient to fulfil the signalling properties of Shh including upregulation of the direct Shh target genes Ptc and Gli, and induction of the downstream target genes Bmp2, Fgf4 and Hoxd13. The expression domains of all these genes extend from their normal posterior domains into the anterior part of the limb bud without being focused on a discrete ectopic site. These observations dissociate polarising activity from Shh gene expression in the Dbf/+ limb bud. We suggest that the product of the normal Dbf gene is a key active constituent of the polarising region, possibly acting in the extracellular compartment.


Sign in / Sign up

Export Citation Format

Share Document