scholarly journals Anti-carcinogenic soyabean Bowman–Birk inhibitors survive faecal fermentation in their active form and do not affect the microbiota composition in vitro

2008 ◽  
Vol 101 (7) ◽  
pp. 967-971 ◽  
Author(s):  
M. Carmen Marín-Manzano ◽  
Raquel Ruiz ◽  
Elisabeth Jiménez ◽  
Luis A. Rubio ◽  
Alfonso Clemente

Bowman–Birk inhibitor (BBI) from soyabeans is a naturally occurring protease inhibitor with potential anti-inflammatory and chemopreventive properties within the gastrointestinal tract (GIT). In a previous paper, we reported that significant amounts of BBI-related proteins reach the terminal ileum functionally and biologically active. We have now investigated: (a) if soyabean BBI is biotransformed by faecal microbiota which would reduce its potential colorectal chemopreventive properties and (b) the potential influence of this protease inhibitor on the modulation of faecal microbiota. In vitro incubation studies of native soyabean BBI at a physiological level (93 μm) with mixed faecal samples of pigs for 24 h at 37°C demonstrated that BBI remains active and its intrinsic trypsin and chymotrypsin inhibitory activities were not significantly influenced by the enzymic or metabolic activity of faecal microbiota. Soyabean BBI did not affect the growth of the different bacterial groups studied (lactobacilli, bifidobacteria, bacteroides, coliforms, enterobacteria, clostridia and total anaerobes). It was concluded that protease inhibitory activities, intrinsically linked to the chemopreventive properties of soyabean BBI, were largely unaffected by faecal microbiota in vitro. BBI retains significance, therefore, as a bioactive compound in the human GIT.

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 422
Author(s):  
Madalina Neacsu ◽  
Vassilios Raikos ◽  
Yara Benavides-Paz ◽  
Sylvia H. Duncan ◽  
Gary J. Duncan ◽  
...  

Legumes are a source of health-promoting macro- and micronutrients, but also contain numerous phytochemicals with useful biological activities, an example of which are saponins. Epidemiological studies suggest that saponins may play a role in protection from cancer and benefit human health by lowering cholesterol. Therefore, they could represent good candidates for specialised functional foods. Following the consumption of a soya-rich high-protein weight-loss diet (SOYA HP WL), the concentrations of Soyasaponin I (SSI) and soyasapogenol B (SSB) were determined in faecal samples from human volunteers (n = 10) and found to be between 1.4 and 17.5 mg per 100 g fresh faecal sample. SSB was the major metabolite identified in volunteers’ plasma (n = 10) after consumption of the soya test meal (SOYA MEAL); the postprandial (3 h after meal) plasma concentration for SSB varied between 48.5 ng/mL to 103.2 ng/mL. The metabolism of SSI by the gut microbiota (in vitro) was also confirmed. This study shows that the main systemic metabolites of soyasaponin are absorbed from the gut and that they are bioavailable in plasma predominantly as conjugates of sapogenol. The metabolism and bioavailability of biologically active molecules represent key information necessary for the efficient development of functional foods.


2008 ◽  
Vol 205 (9) ◽  
pp. 1967-1973 ◽  
Author(s):  
Jonathan Maelfait ◽  
Elisabeth Vercammen ◽  
Sophie Janssens ◽  
Peter Schotte ◽  
Mira Haegman ◽  
...  

The cytokine interleukin (IL)-1β is a key mediator of the inflammatory response and has been implicated in the pathophysiology of acute and chronic inflammation. IL-1β is synthesized in response to many stimuli as an inactive pro–IL-1β precursor protein that is further processed by caspase-1 into mature IL-1β, which is the secreted biologically active form of the cytokine. Although stimulation of membrane-bound Toll-like receptors (TLRs) up-regulates pro–IL-1β expression, activation of caspase-1 is believed to be mainly initiated by cytosolic Nod-like receptors. In this study, we show that polyinosinic:polycytidylic acid (poly[I:C]) and lipopolysaccharide stimulation of macrophages induces pro–IL-1β processing via a Toll/IL-1R domain–containing adaptor-inducing interferon-β–dependent signaling pathway that is initiated by TLR3 and TLR4, respectively. Ribonucleic acid interference (RNAi)–mediated knockdown of the intracellular receptors NALP3 or MDA5 did not affect poly(I:C)-induced pro–IL-1β processing. Surprisingly, poly(I:C)- and LPS-induced pro–IL-1β processing still occurred in caspase-1–deficient cells. In contrast, pro–IL-1β processing was inhibited by caspase-8 peptide inhibitors, CrmA or vFLIP expression, and caspase-8 knockdown via RNAi, indicating an essential role for caspase-8. Moreover, recombinant caspase-8 was able to cleave pro–IL-1β in vitro at exactly the same site as caspase-1. These results implicate a novel role for caspase-8 in the production of biologically active IL-1β in response to TLR3 and TLR4 stimulation.


2018 ◽  
Vol 9 (1) ◽  
pp. 21-34 ◽  
Author(s):  
K. Adamberg ◽  
K. Kolk ◽  
M. Jaagura ◽  
R. Vilu ◽  
S. Adamberg

The metabolic activity of colon microbiota is specifically affected by fibres with various monomer compositions, degree of polymerisation and branching. The supply of a variety of dietary fibres assures the diversity of gut microbial communities considered important for the well-being of the host. The aim of this study was to compare the impact of different oligo- and polysaccharides (galacto- and fructooligosaccharides, resistant starch, levan, inulin, arabinogalactan, xylan, pectin and chitin), and a glycoprotein mucin on the growth and metabolism of faecal microbiota in vitro by using isothermal microcalorimetry (IMC). Faecal samples from healthy donors were incubated in a phosphate-buffered defined medium with or without supplementation of a single substrate. The generation of heat was followed on-line, microbiota composition (V3-V4 region of the 16S rRNA using Illumina MiSeq v2) and concentrations of metabolites (HPLC) were determined at the end of growth. The multiauxic power-time curves obtained were substrate-specific. More than 70% of all substrates except chitin were fermented by faecal microbiota with total heat generation of up to 8 J/ml. The final metabolite patterns were in accordance with the microbiota changes. For arabinogalactan, xylan and levan, the fibre-affected distribution of bacterial taxa showed clear similarities (e.g. increase of Bacteroides ovatus and decrease of Bifidobacterium adolescentis). The formation of propionic acid, an important colon metabolite, was enhanced by arabinogalactan, xylan and mucin but not by galacto- and fructooligosaccharides or inulin. Mucin fermentation resulted in acetate, propionate and butyrate production in ratios previously observed for faecal samples, indicating that mucins may serve as major substrates for colon microbial population. IMC combined with analytical methods was shown to be an effective method for screening the impact of specific dietary fibres on functional changes in faecal microbiota.


2011 ◽  
Vol 107 (10) ◽  
pp. 1466-1475 ◽  
Author(s):  
Gemma E. Walton ◽  
Ellen G. H. M. van den Heuvel ◽  
Marit H. W. Kosters ◽  
Robert A. Rastall ◽  
Kieran M. Tuohy ◽  
...  

Faecal microbial changes associated with ageing include reduced bifidobacteria numbers. These changes coincide with an increased risk of disease development. Prebiotics have been observed to increase bifidobacteria numbers within humans. The present study aimed to determine if prebiotic galacto-oligosaccharides (GOS) could benefit a population of men and women of 50 years and above, through modulation of faecal microbiota, fermentation characteristics and faecal water genotoxicity. A total of thirty-seven volunteers completed this randomised, double-blind, placebo-controlled crossover trial. The treatments – juice containing 4 g GOS and placebo – were consumed twice daily for 3 weeks, preceded by 3-week washout periods. To study the effect of GOS on different large bowel regions, three-stage continuous culture systems were conducted in parallel using faecal inocula from three volunteers. Faecal samples were microbially enumerated by quantitative PCR.In vivo, following GOS intervention, bifidobacteria were significantly more compared to post-placebo (P = 0·02). Accordingly, GOS supplementation had a bifidogenic effect in allin vitrosystem vessels. Furthermore, in vessel 1 (similar to the proximal colon), GOS fermentation led to more lactobacilli and increased butyrate. No changes in faecal water genotoxicity were observed. To conclude, GOS supplementation significantly increased bifidobacteria numbersin vivoandin vitro. Increased butyrate production and elevated bifidobacteria numbers may constitute beneficial modulation of the gut microbiota in a maturing population.


2007 ◽  
Vol 35 (1) ◽  
pp. 44-46 ◽  
Author(s):  
L. Crombez ◽  
A. Charnet ◽  
M.C. Morris ◽  
G. Aldrian-Herrada ◽  
F. Heitz ◽  
...  

The major obstacle to clinical development of siRNAs (short interfering RNAs), like for most of the nucleic-acid-based strategies, is their poor cellular uptake and bioavailability. Although several viral and non-viral strategies have been proposed to improve siRNA delivery, their applications in vivo remain a major challenge. We have developed a new strategy, based on a short amphipathic peptide, MPG, that is able to form stable nanoparticles with siRNA. MPG-based particles enter the cell independently of the endosomal pathway and can efficiently deliver siRNA in a fully biologically active form into a variety of cell lines and in vivo. This short review will discuss the mechanism and the potency of the MPG strategy for siRNA delivery both in vitro and in vivo.


Author(s):  
Xinyue Yu ◽  
Qian Wang ◽  
Baocai Liu ◽  
Ning Zhang ◽  
Guanghui Cheng

Colorectal cancer (CRC) is often resistant to conventional therapies. Previous studies have reported the anticancer effects of vitamin D in several cancers, its role in radiotherapy (RT) remains unknown. We found that 1α, 25-dihydroxyvitamin D3 (VD3), the biologically active form of vitamin D, had antitumor effect on CRC and sensitized CRC cells to ionizing radiation (IR). VD3 demonstrated synergistic effect in combination with IR, which were detected by colony formation and cell proliferation assay. Radiosensitivity restoration induced by VD3 was associated with a series of phenotypes, including apoptosis, autophagy, and epithelial-mesenchymal transition (EMT). Using proteomics, “regulation of cell migration” and “cadherin” were found to be obviously enriched GO terms. Moreover, cystatin D and plasminogen activator inhibitor-1 (PAI-1), the differentially expressed proteins, were associated with EMT. Next, we confirmed the contributions of these two genes in enhancing IR sensitivity of CRC cells upon inhibition of EMT. As determined by proteomics, the mechanism underlying such sensitivity involved partially block of JAK/STAT3 signaling pathway. Furthermore, VD3 also elicited sensitization to RT in xenograft CRC models without additional toxicity. Our study revealed that VD3 was able to act in synergy with IR both in vitro and in vivo and could also confer radiosensitivity by regulating EMT, thereby providing a novel insight for elevating the efficacy of therapeutic regimens.


Medicina ◽  
2020 ◽  
Vol 56 (3) ◽  
pp. 131
Author(s):  
Himal Luitel ◽  
Tatyana Novoyatleva ◽  
Akylbek Sydykov ◽  
Aleksandar Petrovic ◽  
Argen Mamazhakypov ◽  
...  

Background and objectives: Pulmonary hypertension (PH) is characterized by the vasoconstriction and abnormally proliferative vascular cells. The available allopathic treatment options for PH are still not able to cure the disease. Alternative medicine is becoming popular and drawing the attention of the general public and scientific communities. The entomogenous fungus Yarsagumba (Cordyceps sinensis) and its biologically active ingredient cordycepin may represent the therapeutic option for this incurable disease, owing to their anti-inflammatory, vasodilatory and anti-oxidative effects. Methods: In this study, we investigated whether Yarsagumba extract and cordycepin possess anti-proliferative and vasorelaxant properties in the context of PH, using 5-bromo-2’-deoxyuridine assay and isolated mice lungs, respectively. Results: Our results revealed that Yarsagumba extract and its bioactive compound cordycepin significantly attenuated the proliferation of human pulmonary artery smooth muscle cells derived from donor and PH subjects. In isolated murine lungs, only Yarsagumba extract, but not cordycepin, resulted in vasodilatation, indicating the probable existence of other bioactive metabolites present in Yarsagumba that may be responsible for this outcome. Conclusion: Future comprehensive in vivo and in vitro research is crucially needed to discover the profound mechanistic insights with regard to this promising therapeutic potency of Yarsagumba extract and to provide further evidence as to whether it can be used as a strategy for the treatment of PH.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Armelle Tchoumi Neree ◽  
Rodolphe Soret ◽  
Lucia Marcocci ◽  
Paola Pietrangeli ◽  
Nicolas Pilon ◽  
...  

AbstractExcess of histamine in gut lumen generates a pronounced gastrointestinal discomfort, which may include diarrhea and peristalsis dysfunctions. Deleterious effects of histamine can be alleviated with antihistamine drugs targeting histamine receptors. However, many antihistamine agents come with various undesirable side effects. Vegetal diamine oxidase (vDAO) might be a relevant alternative owing to its histaminase activity. Mammalian intestinal mucosa contains an endogenous DAO, yet possessing lower activity compared to that of vDAO preparation. Moreover, in several pathological conditions such as inflammatory bowel disease and irritable bowel syndrome, this endogenous DAO enzyme can be lost or inactivated. Here, we tested the therapeutic potential of vDAO by focusing on the well-known effect of histamine on gut motility. Using ex vivo and in vitro assays, we found that vDAO is more potent than commercial anti-histamine drugs at inhibiting histamine-induced contraction of murine distal colon muscles. We also identified pyridoxal 5′-phosphate (the biologically active form of vitamin B6) as an effective enhancer of vDAO antispasmodic activity. Furthermore, we discovered that rectally administered vDAO can be retained on gut mucosa and remain active. These observations make administration of vDAO in the gut lumen a valid alternative treatment for histamine-induced intestinal dysfunctions.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3066-3066
Author(s):  
Aisha Masood ◽  
Kasyapa Chitta ◽  
Kiersten M Miles ◽  
Nazmul H Khan ◽  
Remi Adelaiye ◽  
...  

Abstract Abstract 3066 Targeting the proteasome has proven to be one of the most effective therapeutic strategies in the treatment of multiple myeloma (MM), and the proteasome inhibitor bortezomib is approved for treatment of MM. However its clinical efficacy is compromised by the acquired resistance in patients, necessitating the development of new therapeutics. Several new proteasome inhibitors are under investigation for their therapeutic efficacy in MM. MLN9708 (Millennium Pharmaceuticals, Inc., Cambridge, MA) is a proteasome inhibitor which shows refined pharmacokinetic and pharmacodynamic properties in preclinical studies and is currently in Phase I clinical development. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form. MLN2238 was used for all of the studies reported here, in which we report the efficacy of MLN2238 on three established MM cell lines-KMS11, OPM2 and U266. MLN2238 was found to inhibit the chymotrypsin-like proteasomal activity of all MM cell lines in a dose dependent manner. Investigation of the IC50 of MLN2238 on these cell lines demonstrated that KMS11 is the most sensitive (IC50 of 15.9 nM) while U266 was found to be the least sensitive cell line (IC50 of 511 nM). OPM2 cells also showed intermediate sensitivity with an IC50 of 58.6 nM. MLN2238 induced apoptosis in KMS11 cells as evidenced by annexin V staining and PARP-1 cleavage. Cleavage of caspases 9 and 3 suggested activation of the intrinsic apoptotic pathway by MLN2238. Furthermore, MLN2238 treatment was shown to increase the mitochondrial outer membrane permeability (MOMP) and decrease BCL-2 levels. Evaluation of the expression of PSMB5, the preferred proteasomal subunit target for both bortezomib and MLN2238, revealed that it is expressed at approximately 3 fold more in KMS11 cells as compared to U266, suggesting a possible mechanism for higher sensitivity of KMS11 to the proteasomal inhibitor, MLN2238. This preclinical evaluation confirms the anti-myeloma effects of MLN2238, warranting further in-depth evaluation in both in vitro and in vivo models of MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1067-1067
Author(s):  
Jon A Kenniston ◽  
Daniel J Sexton ◽  
Diana Martik ◽  
Ryan R Faucette ◽  
Malini Viswanathan ◽  
...  

Abstract The plasma-kallikrein kinin (contact) system contributes to the physiological and pathophysiological reactions of vascular biology. Activation of this pathway causes the release of the potent nonapeptide vasodilator bradykinin following proteolytic cleavage of high-molecular weight kininogen (HMWK) by the serine protease plasma kallikrein (pKal). Normal vascular homeostasis requires regulation of pKal activity by interactions with the C1-inhibitor (C1-INH). This is most apparent in individuals with hereditary angioedema (HAE), a disease characterized by a genetic deficiency in C1-INH that results in persistent pKal activity and consequent bradykinin release. These events can ultimately manifest as unpredictable and potentially fatal attacks of subcutaneous and mucosal edema. Inhibition of pKal proteolytic activity has proven to be a viable therapeutic option for HAE, however there remains an unmet medical need for a long-lasting prophylactic treatment for this disease. Given the potential for target specificity and long serum half-life with antibody therapeutics, we used phage display to select a fully human antibody inhibitor (DX-2930) specific for pKal. In vitro enzyme inhibition and affinity assays demonstrate that DX-2930 is a potent antibody inhibitor of pKal (Ki = 125 pM) that binds the active form of pKal, but not the proenzyme form (prekallikrein) or any other serine protease tested. DX-2930 binding consequently prohibits pKal from cleaving bradykinin out of HMWK and thereby prevents the activation of the bradykinin receptor B2. A 2.1Å resolution X-ray crystallographic structure of pKal complexed to a DX-2930 Fab construct supports these findings, demonstrating that the pKal proteolytic active site is intimately bound - and thereby occluded - by the Fab. This structural analysis provides both a rationale for the potency and specificity of DX-2930, and demonstrates the utility of using antibodies to specifically target an antigen among a family of related proteins (e.g. serine proteases). To further address the functional activity of DX-2930, we demonstrate that subcutaneous dosing of DX-2930 effectively reduces carrageenan-induced paw edema in vivo in rats when injected 24 hours prior to challenge. Combined with our finding that DX-2930 has a prolonged serum residence time in cynomolgus monkeys (t1/2 = 301 hours, SC), the data presented here demonstrates the potential of DX-2930 for the prophylactic inhibition of pKal-mediated diseases, such as HAE. Disclosures: Kenniston: Dyax Corp: Employment. Sexton:Dyax Corp: Employment. Martik:Dyax Corp: Employment, former employee of Dyax Corp Other. Faucette:Dyax Corp: Employment. Viswanathan:Dyax Corp: Employment. Kastrapeli:Dyax: Employment. Kopacz:Dyax Corp: Employment. Conley:Dyax Corp: Employment. Lindberg:Dyax Corp: Employment. Cosic:Dyax Corp: Employment. Comeau:Dyax Corp: Employment. Mason:Dyax Corp: Employment. DiLeo:Dyax Corp: Employment. Chen:Dyax Corp: Employment. Ladner:Dyax Corp: Employment. Edwards:Emerald Biostructures: Employment. TenHoor:Dyax Corp: Employment. Nixon:Dyax Corp: Employment. Adelman:Dyax Corp: Employment.


Sign in / Sign up

Export Citation Format

Share Document