scholarly journals Dietary DHA: time course of tissue uptake and effects on cytokine secretion in mice

2010 ◽  
Vol 104 (9) ◽  
pp. 1304-1312 ◽  
Author(s):  
Jennifer Lefils ◽  
Alain Géloën ◽  
Hubert Vidal ◽  
Michel Lagarde ◽  
Nathalie Bernoud-Hubac

Consumption of DHA has numerous beneficial effects, but little is known about these effects during the first few days of the DHA dietary intake. The main objectives of the present study were to determine the time course of DHA incorporation into phospholipids in different mouse tissues and the effects of DHA supplementation on adiponectin and leptin secretion. Mice were fed either a control diet or a DHA-rich diet, and some were killed on days 0, 4, 8, 16 and 32. Some mice were fed the DHA-rich diet for 16 d, and were then maintained on the control diet for sixteen more days (washout period). DHA supplementation increased plasma adiponectin secretion by 2·4-fold as early as 4 d after the initiation of the DHA-rich diet feeding. The adiponectin concentration remained 1·6-fold higher after the 16 d washout period. Plasma leptin levels were significantly lower after 4 d of feeding with DHA. These effects were associated with a significant increase in DHA incorporation in phosphatidylethanolamine and phosphatidylcholine of all analysed tissues (liver, heart and white adipose tissues). DHA mainly got incorporated at the expense of n-6 arachidonic acid. The present data show that DHA rapidly improved the profile of secreted adipokines, and that these protective effects were long lasting.

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 535-535
Author(s):  
Shima Bibi ◽  
Yansong Xue ◽  
Yang He ◽  
Min Du ◽  
Boon Chew ◽  
...  

Abstract Objectives The incidence of inflammatory bowel disease (IBD) is rapidly increasing worldwide. Patients with IBD experience increased susceptibility to colorectal cancer and are associated with morbidity and mortality. Diets are known factors associated with IBD. This study examined the beneficial effects of dietary purple potato against spontaneous colitis and improving gut microbiota in interleukin (IL)-10-deficient mice, a commonly used IBD mice model. Methods IL-10-deficient mice at 7-week-old were assigned to a standard rodent diet (CON) or a control diet supplemented with 10% purple potato (dry feed weight) for 11 weeks, when colonic tissues were collected for histological and biochemical analyses. Results Purple potato supplementation had no effect on feed intake and body weight in IL-10-deficient mice during the 11-week feeding trial. Purple potato supplementation improved the colitis symptom and the integrity of the colonic epithelial structure with reduced inflammation and pathological scores. Furthermore, the density of goblet cells and differentiation markers for goblet cells was enhanced due to PP supplementation. Conclusions Data collectively showed that dietary purple potato supplementation had protective effects against colitis onset in IL-10-deficient mice and improved gut epithelial structure, providing a promising dietary approach for the management and prevention of colitis. Funding Sources USDA-NIFA and Northwest Potato Research Consortium.


2018 ◽  
Vol 24 (3) ◽  
pp. 365-378 ◽  
Author(s):  
Chen Guang-Yi ◽  
Ge Li-Sha ◽  
Li Yue-Chun

The morbidity of myocarditis demonstrates an upward tendency by years, is commonly defined as the inflammation of myocytes and is caused by multiple factors. With the development of the molecular biological technique, great breakthroughs in the diagnosis and understanding of pathophysiological mechanisms of myocarditis have recently been achieved. Several questions remain unresolved, however, including standard treatment approaches to myocarditis, which remain controversial and ambiguous. Heart rate, as an independent risk factor, has been shown to be related to cardiac disease. Recent studies also show that the autonomic nervous system is involved in immunomodulatory myocarditis processes. Heart rate reduction treatment is recommended in myocarditis based on a number of animal experiments and clinical trials. It is possible that heart rate-lowering treatments can help to attenuate the inflammatory response and myocyte injury and reverse ventricular remodeling. However, how to execute the protective effects of heart rate reduction on myocarditis is still not clear. In this review, we discuss the pathogenesis and pathophysiological process of viral myocarditis and propose heart rate lowering as a therapeutic target for myocarditis, especially in light of the third-generation β-blockade carvedilol and funny channel blocker ivabradine. We also highlight some additional beneficial effects of such heart rate reduction agents, including anti-inflammatory, antioxidation, anti-nitrosative stress, anti-fibrosis and antiapoptosis properties.


2021 ◽  
Author(s):  
Ryohei Nishiguchi ◽  
Srijani Basu ◽  
Hannah A Staab ◽  
Naotake Ito ◽  
Xi Kathy Zhou ◽  
...  

Abstract Diet is believed to be an important factor in the pathogenesis of Inflammatory Bowel Disease. High consumption of dietary fructose has been shown to exacerbate experimental colitis, an effect mediated through the gut microbiota. This study evaluated whether dietary alterations could attenuate the detrimental effects of a high fructose diet (HFrD) in experimental colitis. First, we determined whether the pro-colitic effects of a HFrD could be reversed by switching mice from a HFrD to a control diet. This diet change completely prevented HFrD-induced worsening of acute colitis, in association with a rapid normalization of the microbiota. Second, we tested the effects of dietary fiber, which demonstrated that psyllium was the most effective type of fiber for protecting against HFrD-induced worsening of acute colitis, compared to pectin, inulin or cellulose. In fact, supplemental psyllium nearly completely prevented the detrimental effects of the HFrD, an effect associated with a shift in the gut microbiota. We next determined whether the protective effects of these interventions could be extended to chronic colitis and colitis-associated tumorigenesis. Using the azoxymethane/dextran sodium sulfate model, we first demonstrated that HFrD feeding exacerbated chronic colitis and increased colitis-associated tumorigenesis. Using the same dietary changes tested in the acute colitis setting, we also showed that mice were protected from HFrD-mediated enhanced chronic colitis and tumorigenesis, upon either diet switching or psyllium supplementation. Taken together, these findings suggest that high consumption of fructose may enhance colon tumorigenesis associated with long-standing colitis, an effect that could be reduced by dietary alterations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Victoria Svop Jensen ◽  
Christian Fledelius ◽  
Christina Zachodnik ◽  
Jesper Damgaard ◽  
Helle Nygaard ◽  
...  

Abstract Background Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent comorbidities in patients with Type 2 diabetes. While many of these patients eventually will need treatment with insulin, little is known about the effects of insulin treatment on histopathological parameters and hepatic gene expression in diabetic patients with co-existing NAFLD and NASH. To investigate this further, we evaluated the effects of insulin treatment in NASH diet-fed hamsters with streptozotocin (STZ) -induced hyperglycemia. Methods Forty male Syrian hamsters were randomized into four groups (n = 10/group) receiving either a NASH-inducing (high fat, fructose and cholesterol) or control diet (CTRL) for four weeks, after which they were treated with STZ or sham-injected and from week five treated with either vehicle (CTRL, NASH, NASH-STZ) or human insulin (NASH-STZ-HI) for four weeks by continuous s.c. infusion via osmotic minipumps. Results NASH-STZ hamsters displayed pronounced hyperglycemia, dyslipidemia and more severe liver pathology compared to both CTRL and NASH groups. Insulin treatment attenuated dyslipidemia in NASH-STZ-HI hamsters and liver pathology was considerably improved compared to the NASH-STZ group, with prevention/reversal of hepatic steatosis, hepatic inflammation and stellate cell activation. In addition, expression of inflammatory and fibrotic genes was decreased compared to the NASH-STZ group. Conclusions These results suggest that hyperglycemia is important for development of inflammation and profibrotic processes in the liver, and that insulin administration has beneficial effects on liver pathology and expression of genes related to inflammation and fibrosis in a hyperglycemic, dyslipidemic hamster model of NAFLD.


2018 ◽  
Vol 19 (8) ◽  
pp. 2180 ◽  
Author(s):  
María Ariza ◽  
Tamara Forbes-Hernández ◽  
Patricia Reboredo-Rodríguez ◽  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
...  

Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.


1995 ◽  
Vol 9 (3) ◽  
pp. 235-238 ◽  
Author(s):  
W.M. Edgar ◽  
S.M. Higham

The crucial role played by the actions of saliva in controlling the equilibrium between de- and remineralization in a cariogenic environment is demonstrated by the effects on caries incidence of salivary dysfunction and by the distribution of sites of caries predilection to those where salivary effects are restricted. However, of the several properties of saliva which may confer protective effects, it is not certain which are most important. A distinction can be made between static protective effects, which act continuously, and dynamic effects, which act during the time-course of the Stephan curve. Evidence implicates salivary buffering and sugar clearance as important dynamic effects of saliva to prevent demineralization; of these, the buffering of plaque acids may predominate. Enhanced remineralization of white spot lesions may also be regarded as dynamic protective effects of saliva. Fluoride in saliva (from dentifrices, ingesta, etc.) may promote remineralization and (especially fluoride in plaque) inhibit demineralization. The design of experiments using caries models must take into account the static and dynamic effects of saliva. Some models admit a full expression of these effects, while others may exclude them, restricting the range of investigations possible. The possibility is raised that protective effects of saliva and therapeutic agents may act cooperatively.


1983 ◽  
Vol 3 (6) ◽  
pp. 1062-1069
Author(s):  
R Müller ◽  
D J Slamon ◽  
E D Adamson ◽  
J M Tremblay ◽  
D Müller ◽  
...  

We investigated the expression of cellular sequences c-rasKi and c-fms, which are homologous to the oncogenes of Kirsten rat sarcoma virus and the McDonough strain of feline sarcoma virus, during murine development and in a variety of mouse tissues. The c-rasKi gene was found to be transcribed into two mRNA species of approximately 2.0 and 4.4 kilobases, whereas a single c-fms-related transcript of approximately 3.7 kilobases was identified. The c-rasKi gene appeared to be expressed ubiquitously, since similar levels of transcripts were observed in embryos, fetuses, extraembryonal structures, and a variety of postnatal tissues. In contrast, significant expression of c-fms was found to be confined to the placenta and extraembryonal membranes (i.e., combined yolk sac and amnion). The concentration of c-fms transcripts in the placenta increased approximately 15-fold (relative to day-7 to day-9 conceptuses) during development before reaching a plateau at day 14 to 15 of gestation. The time course of cfms expression in the extraembryonal membranes appeared to parallel the stage-specific pattern observed in the placenta. The level of c-fms transcripts in the extraembryonal tissues reached a level which was approximately 20- to 50-fold greater than that in the fetus. These findings suggest that the c-fms gene product may play a role in differentiation of extraembryonal structures or in transport processes occurring in these tissues. Our results indicate that the c-onc genes analyzed in the present study exert essentially different functions during mouse development.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ulka Sachdev ◽  
Xiangdong Cui ◽  
Qian Sun ◽  
Edith Tzeng ◽  
Alex Chen ◽  
...  

Introduction: Millions of Americans are at risk for amputation from severe peripheral arterial disease (PAD) when surgery is not possible. Pro-regenerative and angiogenic agents may improve outcome in that setting. Chloroquine (CQ) promotes wound healing in scleroderma but has not been tested in PAD. CQ promotes healing of ischemic muscle, increases muscle high mobility group box 1 (HMGB1), an inflammatory, pro-angiogenic protein, and activates caspase-1 in myoblasts. We hypothesize that HMGB1 mediates protective effects of CQ and is regulated by caspase-1 in muscle. Controlled rather than indiscriminate release of HMGB1 from damaged muscle may be protective during ischemia. Methods: C2C12 myoblasts in low serum were treated with CQ (0-50μM) ± Ac-YVAD-cmk (10 μg/ml), a caspase-1 inhibitor. HMGB1 release in supernatants was measured using ELISA. Cytotoxicity was assessed by comparing spontaneous lactate dehydrogenase (LDH) activity in culture media from control, treated and maximally lysed cells. CQ (50μg/ml) or placebo treated wild-type and inducible HMGB1 knockout (iHMGB1KO) mice underwent unilateral femoral artery ligation (FAL). Laser Doppler perfusion imaging (LDPI) before and 1,7,14 and 21d after FAL was reported as % improvement over time. ANOVA was used to assess statistical significance among groups. Results: CQ (5-10uM) attenuated spontaneous LDH leak after 12h from serum-depleted myoblasts (p <0.01, N=3), and modestly increased HMGB1 release (p <0.001, N=3). Ac-YVAD-cmk reversed the cytoprotective effects of CQ, significantly raising both LDH activity to 55% of maximal activity and HMGB1 in the supernatant. Compared to d1 post FAL, CQ improved perfusion recovery in WT mice by 300-800% over 21 days (p<0.03, N=7/group), but not in iHMGB1KO mice. Conclusion: We present the novel finding that in nutrient-depleted myoblasts, caspase-1 mediates the survival benefits of CQ and regulates HMGB1 release. In turn, HMGB1 is critical for CQ’s beneficial effects on perfusion after FAL, another stress condition. Regulated HMGB1 release may be immunomodulatory, regenerative and modifiable with drugs like CQ. Altering survival and inflammatory pathways through CQ may present a novel therapeutic strategy in PAD.


Sign in / Sign up

Export Citation Format

Share Document