Towards the Reliable Prediction of Time to Flowering in Six Annual Crops. II. Soyabean (Glycine Max)

1993 ◽  
Vol 29 (3) ◽  
pp. 253-289 ◽  
Author(s):  
R. J. Summerfield ◽  
R. J. Lawn ◽  
A. QI ◽  
R. H. Ellis ◽  
E. H. Roberts ◽  
...  

SUMMARYEleven genotypes of soyabean (Glycine max) of tropical, sub-tropical and temperate origin and one accession of G. soja were grown in six locations in Australia during 1986–88, and at one location in Australia and two in Taiwan during 1989–91. Dates of sowing were varied within and among locations so as to expose plants to as many as 32 environments of widely different diurnal temperature and daylength. Times from sowing to flowering (f) were recorded, from which rates of progress towards flowering (1/f) were calculated. These derived data were then related to mean pre-flowering values of temperature (T¯) and photoperiod (P) using a three-plane linear model developed from controlled environment data. Among genotypes, mean values of f varied between 24–49 d and between 139–291 d in the most- and least-inductive environments, respectively. These differences were associated with variations in P from about 11 to 16 h d-1, in daily mean maximum temperatures from about 17° to 36°C, in daily mean minimum temperatures from about 5° to 25°C, and in T¯ from about 11° to 30°C, that is, a very wide range of photothermal regimes. The relations of 1/f to T¯ and P can be described in photoperiod-insensitive genotypes by a thermal plane defined by two constants, a and b, and additionally by a photothermal plane defined by three constants, a′, b′ and c′, in the more numerous photoperiod-sensitive genotypes. If photoperiod-sensitive genotypes are grown in sufficiently long days then a third photoperiod and temperature-insensitive plane is exposed, defined by a constant, d′; this plane indicates the maximum delay in flowering of which the genotype is capable. The constants a′, b′, c′ and d′ define the delay in flowering caused by photoperiod-sensitivity genes. The two intercepts between the three planes define, respectively, the critical photoperiod, Pc, above which increase in daylength delays flowering, and the ceiling photoperiod, Pcc, above which there is no further delay. The values of the six constants for any genotype can be estimated from observations of fin several natural environments. Comparisons between years in Australia and between Australia and Taiwan show that these genotypic constants can predict 1/f, and so the time taken to flower, given data on latitude, sowing date and daily values of maximum and minimum air temperatures. This model is more accurate than an alternative logistic model; we also believe that all six constants in the three-plane rate model described here have biological meaning. They indicate separate genetic control of flowering responses to P and T¯ and could form a rational basis for the genetic characterization and analysis of these responses in the soyabean germplasm.Pronóstico del momento de floración II

1996 ◽  
Vol 32 (2) ◽  
pp. 111-128 ◽  
Author(s):  
P. A. Omanga ◽  
R. J. Summerfield ◽  
A. Qi

SUMMARYThe effects of temperature and photoperiod on times from sowing to flowering (f) were investigated in medium-and late-maturing pigeonpea (Cajanus cajan). Twelve genotypes were sown in two seasons at seven sites in Kenya, covering latitudes 0–4°S and a wide range of altitudes (50–2000 m), as well as under polythene enclosures constructed at six sites to create warmer temperature regimes (a total of 26 environments). The same genotypes were also sown at monthly intervals and in an artificially extended photoperiod (in the open as well as under polythene) created by incandescent lamps suspended above the plots at Katumani (1°30′S).Times from sowing to flowering varied from 70 to more than 300 days and were associated with variations in mean pre-flowering values of temperature and photoperiod which ranged from 15.2° to 32.7°C and from 12.6 to 15.0 h d−1. Genotypic variation in f in the most inductive regimes (a mean pre-flowering temperature of 24.3°C for the medium- and 20.8°C for the late-maturing genotypes, combined with a mean pre-flowering photoperiod of 12.6 and 12.8 h d−1) ranged from 70 and 76 days and from 85 to 112 days, respectively. There were no photoperiodic effects on f over the range from 12.6 to 13.1 h d−1, but the artificially extended day delayed flowering, especially in the late-maturing genotypes.The relation between l/f and the mean pre-flowering temperature was linear below and above an optimum temperature, To. The genotype-specific parameters derived from these thermal linear rate models based on flowering responses in 26 environments closely predicted l/f and therefore f in an independent sequence of monthly sowings. It was thus responses to temperature below and above To and not responses to daylength which modulated flowering throughout the wide range of natural environments tested within this vast country, even in the late-maturing and most photoperiod-sensitive genotypes.


Author(s):  
Thomas I Pérez-Gianmarco ◽  
Alan D Severini ◽  
Fernanda G González

Abstract Coupling anthesis date to the best environment is critical for wheat (Triticum aestivum L.) adaptation and yield potential. Development to anthesis is controlled by temperature and photoperiod. Response to photoperiod is chiefly modulated by Ppd-1 genes, but their effect on the quantitative response of i) time to anthesis, and ii) pre-anthesis phases to photoperiod remains largely unknown. A photoperiod-sensitive spring cultivar, Paragon, and near-isogenic lines of it carrying different combinations of Ppd-1a insensitivity alleles were tested under a wide range of photoperiods, including switches in photoperiod at the onset of stem elongation. Using multimodel inference we found that Ppd-1a alleles reduced photoperiod sensitivity from a) emergence to anthesis and b) emergence to onset of stem elongation, both in a less than additive manner, while threshold photoperiod and intrinsic earliness were unaffected. Sensitivity to current photoperiod from onset of stem elongation to flag leaf and from then to anthesis was milder than for previous phases and was not related to variability in Ppd-1. But ‘memory’ effects of previously experienced photoperiod on the duration from onset of stem elongation to flag leaf, was. The characterisation and quantification provided here of Ppd-1 allelic combinations’ effects on development should help increase genotype-to-phenotype models’ accuracy for predicting wheat phenology.


2020 ◽  
Vol 12 (4) ◽  
pp. 348-352
Author(s):  
S. Malchev ◽  
S. Savchovska

Abstract. The periods with continuous freezing air temperatures reported during the spring of 2020 (13 incidents) affected a wide range of local and introduced sweet cherry cultivars in the region of Plovdiv. They vary from -0.6°C on March 02 to -4.9°C on March 16-17. The duration of influence of the lowest temperatures is 6 and 12 hours between March 16 and 17. The inspection of fruit buds and flowers was conducted twice (on March 26 and April 08) at different phenological stages after continuous waves of cold weather conditions alternated with high temperatures. During the phenological phase ‘bud burst’ (tight cluster or BBCH 55) some of the flowers in the buds did not develop further making the damage hardly detectable. The most damaged are hybrid El.28-21 (95.00%), ‘Van’ (91.89%) and ‘Bing’ (89.41%) and from the next group ‘Lapins’ (85.98%) and ‘Rosita’ (83.33%). A larger intermediate group form ‘Kossara’ (81.67%), ‘Rozalina’ (76.00%), ‘Sunburst’ (75.00%), ‘Bigarreau Burlat’ (69.11%) and ‘Kuklenska belitza’ (66.67%). Candidate-cultivar El.17-90 ‘Asparuh’ has the lowest frost damage values of 55.00% and El.17-37 ‘Tzvetina’ with damage of 50.60%.


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 497-501 ◽  
Author(s):  
C. D. Boyette ◽  
G. E. Templeton ◽  
R. J. Smith

An indigenous, host-specific, pathogenic fungus that parasitizes winged waterprimrose [Jussiaea decurrens(Walt.) DC.] is endemic in the rice growing region of Arkansas. The fungus was isolated and identified asColletotrichum gloeosporioides(Penz.) Sacc. f.sp. jussiaeae(CGJ). It is highly specific for parasitism of winged waterprimrose and not parasitic on creeping waterprimrose (J. repensL. var.glabrescensKtze.), rice (Oryza sativaL.), soybeans [Glycine max(L.) Merr.], cotton (Gossypium hirsutumL.), or 4 other crops and 13 other weeds. The fungus was physiologically distinct from C.gloeosporioides(Penz.) Sacc. f. sp.aeschynomene(CGA), an endemic anthracnose pathogen of northern jointvetch[Aeschynomene virginica(L.) B.S.P.], as indicated by cross inoculations of both weeds. Culture in the laboratory and inoculation of winged waterprimrose in greenhouse, growth chamber and field experiments indicated that the pathogen was stable, specific, and virulent in a wide range of environments. The pathogen yielded large quantities of spores in liquid culture. It is suitable for control of winged waterprimrose. Winged waterprimrose and northern jointvetch were controlled in greenhouse and field tests by application of spore mixtures of CGJ and CGA at concentrations of 1 to 2 million spores/ml of each fungus in 94 L/ha of water; the fungi did not damage rice or nontarget crops.


2020 ◽  
Vol 1008 ◽  
pp. 128-138
Author(s):  
Ahmed M. Salman ◽  
Ibrahim A. Ibrahim ◽  
Hamada M. Gad ◽  
Tharwat M. Farag

In the present study, the combustion characteristics of LPG gaseous fuel diffusion flame at elevated air temperatures were experimentally investigated. An experimental test rig was manufactured to examine a wide range of operating conditions. The investigated parameters are the air temperatures of 300, 350, 400, 450, and 500 K with constant percentage of nitrogen addition in combustion air stream of 5 % to give low oxygen concentration of 18.3 % by mass at constant air swirl number, air to fuel mass ratio, and thermal load of 1.5, 30, and 23 kW, respectively. The gaseous combustion characteristics were represented as axial and radial temperatures distributions, temperatures gradient, visible flame length and species concentrations. The results indicated that as the air temperature increased, the chemical reaction rate increased and flame volume decreased, the combustion time reduced leading to a reduction in flame length. The NO concentration reaches its maximum values near the location of the maximum centerline axial temperature. Increasing the combustion air temperature by 200 K, the NO consequently O2 concentrations are increased by about % 355 and 20 % respectively, while CO2 and CO concentrations are decreased by about % 21 and 99 % respectively, at the combustor end.


2008 ◽  
Vol 48 (3) ◽  
pp. 296 ◽  
Author(s):  
C. J. Birch ◽  
G. McLean ◽  
A. Sawers

This paper reports on the use of APSIM – Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004–05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004–05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004–05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.


2020 ◽  
Vol 100 (5) ◽  
pp. 528-536
Author(s):  
David A. Baumbauer ◽  
Macdonald H. Burgess

Moveable high tunnels offer the possibility of increasing the number of crops harvested from a given piece of ground in northern latitudes where there is a short growing season. In an effort to expand crop scheduling options, three leafy greens and three root vegetables were grown in the spring in a movable high tunnel, and in the fall were sown outside and the tunnel was moved over the crops in late September. The effects of seeding date and addition of row cover were further explored on fresh weight and days to harvest. Using row cover within the high tunnel increased growing degree hours (GDH) by an average of 29% in the spring and 17% in the fall over a high tunnel without row cover. Soil degree hours (SDH) in the high tunnel with row cover increased an average of 9% in the spring and 12% in the fall over the high tunnel without row cover. The addition of row cover increased yield of leafy greens and turnip by an average of 35% in spring 2018 when the outside air temperature was considerably below average. Early-seeded fall leafy greens out-yielded late-seeded by 52% due to the ability to make a second harvest. Using row cover within the high tunnel increased GDH and SDH during both spring and fall seasons and increased the yield of cool season vegetables when outside air temperatures were considerably below average.


2018 ◽  
Vol 9 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Dario Cazzato ◽  
Fabio Dominio ◽  
Roberto Manduchi ◽  
Silvia M. Castro

Abstract Automatic gaze estimation not based on commercial and expensive eye tracking hardware solutions can enable several applications in the fields of human computer interaction (HCI) and human behavior analysis. It is therefore not surprising that several related techniques and methods have been investigated in recent years. However, very few camera-based systems proposed in the literature are both real-time and robust. In this work, we propose a real-time user-calibration-free gaze estimation system that does not need person-dependent calibration, can deal with illumination changes and head pose variations, and can work with a wide range of distances from the camera. Our solution is based on a 3-D appearance-based method that processes the images from a built-in laptop camera. Real-time performance is obtained by combining head pose information with geometrical eye features to train a machine learning algorithm. Our method has been validated on a data set of images of users in natural environments, and shows promising results. The possibility of a real-time implementation, combined with the good quality of gaze tracking, make this system suitable for various HCI applications.


1978 ◽  
Vol 44 (6) ◽  
pp. 918-925 ◽  
Author(s):  
E. Kamon ◽  
B. Avellini ◽  
J. Krajewski

Heat-acclimated, lightly clothed men and women (four of each) walked on a treadmill at 25% and 43% VO2 max, respectively, (M =194 W.m-2), under seven air temperatures (Ta) ranging from 36 to 52 degrees C. Each experiment involved 1 h of fixed and a 2nd h of progressively increasing ambient vapor pressure (Pa). The relative steady state of rectal temperature (Tre), mean skin temperature (Tsk), and heart rate (HR) reached in the 1st h were forced upward during the 2nd h by the rising Pa. The critical air vapor pressure (Pcrit) was identified by the Tre point of inflection for each Ta. One man did not fully reach steady state, but inflection could be determined for his physiological responses. The mean values of all points of inflection were calculated for Tre, Tsk, and HR. Significant sex difference in HR was found only by excluding the results of the one man. Tre and Tsk showed no significant difference between men and women. The coefficient for evaporative heat transfer (he), which could be derived using the Pcrit for the low Ta range, was 14.5 +/- 2.2 W.m-1 Torr-1.


In some rice dominated tropical regions, such as in Indonesia, soybeans are an increasingly important dry season crop which are often exposed to periods of drought stress. The morphological and physiological responses, which could lead to some tolerance to water stress, may vary between varieties. By better understanding the plant response to drought stress and finding if these responses vary between varieties better dry season production could be achieved. An experiment was conducted to compare the response of four varieties of soybean (glycine max (l.) Meer.) to five watering regimes, with the objective of determining the response of common soybean varieies across a wide range of water supply. Plant response to water supply was measured using gas exchange measurement with the rate of photo synthesis decreasing progressively from well watered to dry conditions across the four varieties. A correlation of stomatal conductance and transpiration rate has a close relationship with photosynthetic rate, where stomatal conductance of Burangrang variety has higher value than other varieties. Varieties Burangrang and Argomulyo stomatal conductances are higher value than those of Anjasmoro and Grobogan varieties. In a deficit of water condition, the Argomulyo varieties have a higher value of transpiration efficiency and significantly different than the other three varieties. The transpiration efficiency significantly declined for treatments watered once every two or three weeks. The transpiration efficiency values of Agromulyo and Burangrang varieties were significantly higher than another varieties.


Sign in / Sign up

Export Citation Format

Share Document