Maize relay intercropping with fodder crops for small-scale farmers in central Brazil

2020 ◽  
Vol 56 (4) ◽  
pp. 561-573
Author(s):  
Alpha Bocar Baldé ◽  
Eric Scopel ◽  
François Affholder ◽  
Fernando Antonio Macena Da Silva ◽  
Jacques Wery ◽  
...  

AbstractRelay intercropping of maize with fodder crops is a promising option for sustainable intensification of dairy small-scale farms in the Cerrado of Brazil. Twenty-six intercropping trials were conducted on farmers’ fields with the following experimental treatments: sole maize crop cropping (MS), maize-Brachiaria intercropping (MB) and maize-pigeon pea intercropping (MP). The trials were managed by the farmers, i.e. choice of conventional tillage (CT) versus no-tillage (NT), sowing dates, fertilization and weed control. Maize grain yield varied strongly across the farmer fields, from 100 to 5900 kg ha−1 in the MS treatment, 500 to 6900 kg ha−1 in MP and 300 to 5500 kg ha−1 in MB. Intercropping did not significantly affect maize grain yields under NT, but yields were reduced under CT in one out of two seasons. Maize yields in the intercropped systems were also higher under NT than CT. Total biomass productivity was significantly higher in the maize-fodder than in the sole maize system. An increased interval between sowing of maize and fodder crop significantly reduced the fodder crop biomass. Relay intercropping, especially in combination with NT, is a promising option if crop calendars and fertilization are properly managed by farmers to reduce interspecific competition between the maize and fodder crop.

2021 ◽  
Vol 11 (4) ◽  
pp. 1788
Author(s):  
Thanh-Tri Do ◽  
Binh-Nguyen Ong ◽  
Tuan-Loc Le ◽  
Thanh-Cong Nguyen ◽  
Bich-Huy Tran-Thi ◽  
...  

In the production of astaxanthin from Haematococcus pluvialis, the process of growing algal biomass in the vegetative green stage is an indispensable step in both suspended and immobilized cultivations. The green algal biomass is usually cultured in a suspension under a low light intensity. However, for astaxanthin accumulation, the microalgae need to be centrifuged and transferred to a new medium or culture system, a significant difficulty when upscaling astaxanthin production. In this research, a small-scale angled twin-layer porous substrate photobioreactor (TL-PSBR) was used to cultivate green stage biomass of H. pluvialis. Under low light intensities of 20–80 µmol photons m−2·s−1, algae in the biofilm consisted exclusively of non-motile vegetative cells (green palmella cells) after ten days of culturing. The optimal initial biomass density was 6.5 g·m−2, and the dry biomass productivity at a light intensity of 80 µmol photons m−2·s−1 was 6.5 g·m−2·d−1. The green stage biomass of H. pluvialis created in this small-scale angled TL-PSBR can be easily harvested and directly used as the source of material for the inoculation of a pilot-scale TL-PSBR for the production of astaxanthin.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1459
Author(s):  
Heba S. A. Salama ◽  
Ali I. Nawar ◽  
Hassan E. Khalil ◽  
Ahmed M. Shaalan

The sequence of the preceding crops in a no-tillage farming system, could interact with the integrated use of mineral and organic nitrogen (N) sources in a way that improves the growth and productivity of the terminal maize crop, meanwhile, enhancing its N use efficiency (NUE). In the current study, six legume-cereal crop sequences, including faba bean, soybean, Egyptian clover, wheat, and maize were evaluated along two experimental rotations that ended up by planting the terminal maize crop. In addition, the effects of applying variable mineral nitrogen (MN) rates with and without the incorporation of farmyard manure (FYM) on the productive performance of maize and its NUE were tested. The field experiments were conducted in a no-tillage irrigated farming system in Northern Egypt, a location that is characterized by its arid, Mediterranean climate. Results revealed that increasing the legume component in the evaluated crop sequences, up to 75%, resulted in improved maize ear leaf area, 1000-grain weight, and harvest index, thus, a higher final grain yield, with the inclusion of Egyptian clover was slightly better than faba bean. Comparing the crop sequences with 50% legume contribution uncovered the positive effects of soybean preceding crop on the terminal maize crop. Substituting 25% of the applied MN with FYM resulted in similar maize yields to the application of the equivalent 100% MN rates. The fertilizer treatments significantly interacted with the crop sequences in determining the maize grain yield, where the highest legume crop contribution in the crop sequence (75%) equalized the effects of the different fertilizer treatments on maize grain yield. The integrated use of FYM with MN in maize fertilization improved the NUE compared to the application of MN alone. Comparing fertilization treatments with similar MN content, with and without FYM, revealed that the difference in NUE was attributed to the additional amount of FYM. In similar conditions to the current study, it is recommended to grow faba bean two years before maize, while Egyptian clover could be grown directly preceding maize growth, with frequent inclusion of soybean in the sequence, this could be combined with the application of an average of 200 kg MN ha−1 in addition to FYM.


2015 ◽  
Vol 39 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Elói Panachuki ◽  
Ildegardis Bertol ◽  
Teodorico Alves Sobrinho ◽  
Paulo Tarso Sanches de Oliveira ◽  
Dulce Buchala Bicca Rodrigues

Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols). In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT), conventional tillage (CT), and minimum tillage (MT) with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb) and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.). Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.


2019 ◽  
Vol 112 (4) ◽  
pp. 1705-1712 ◽  
Author(s):  
Bernardo L Muatinte ◽  
Johnnie Van den Berg

Abstract Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) populations are maintained in wild host plants such as trees that act as pest reservoirs from where beetle infestation of maize granaries take place. In this study, we assessed the suitability of plant species sold and transported as firewood as well as other plant species in Mozambique as hosts for P. truncatus. Prostephanus truncatus was only recorded from three tree species, which are sold as firewood, i.e., Brachystegia spiciformis, Strychnos spinosa, and Colophospermum mopane. The pest survived and bred in 13 tree and 7 grass species. Dry wood of several tree species and the grasses Acroceras macrum and Hyparrhenia hirta were suitable hosts for pest development. Sale and transport of certain firewood species may be an important driver of the spread of this pest. The importance of dry maize stalks and several grass species in sustaining pest populations is described for the first time. Several grass species are used as thatch or fencing material and, together with maize crop residues close to small-scale granaries, may provide significant sources of beetle infestation.


1985 ◽  
Vol 104 (3) ◽  
pp. 529-534
Author(s):  
E. P. Papanicolaou ◽  
V. D. Skarlou ◽  
C. Nobeli ◽  
N. S. Katranis

SummaryIn this study two field experiments were conducted on a heavy to medium heavy, calcareous, recent alluvial soil of Central Greece. The main aim of these experiments was to study the effect of the most common nitrogen sources, applied in one or two doses, on maize growth and fertilizer utilization. Foliar application of urea was also a treatment included in these experiments.Phosphorus alone had no significant effect on maize yield. Nitrogen (various forms), alone or in combination with phosphorus, increased the yield and nitrogen content of maize. Maize yield was not significantly affected by the form of nitrogen or by dividing the application of nitrogen. Foliar applications of urea were as effective as soil applications in increasing maize grain yields.The percentage of fertilizer nitrogen taken up (utilization coefficient) ranged between ca. 58% for sodium nitrate and ammonium nitrate, and ca. 39% for ammonium sulphate and urea, when the fertilizers were applied about 10 weeks after sowing. Foliar urea was nearly as efficiently utilized as urea applied as a sidedressing. Application of the tested fertilizers before sowing was nearly as efficient as or more efficient than application of the fertilizers as a sidedressing at 70 cm plant height (38 days after sowing). Finally, addition of 120 kg N/ha enhanced the amount of soil nitrogen taken up in the maize crop by 33%.


2016 ◽  
Vol 371 (1694) ◽  
pp. 20150284 ◽  
Author(s):  
Vanessa Minden ◽  
Christoph Scherber ◽  
Miguel A. Cebrián Piqueras ◽  
Juliane Trinogga ◽  
Anastasia Trenkamp ◽  
...  

Ecosystems managed for production of biomass are often characterized by low biodiversity because management aims to optimize single ecosystem functions (i.e. yield) involving deliberate selection of species or cultivars. In consequence, considerable differences in observed plant species richness and productivity remain across systems, and the drivers of these differences have remained poorly resolved so far. In addition, it has remained unclear if species richness feeds back on ecosystem functions such as yield in real-world systems. Here, we establish N = 360 experimental plots across a broad range of managed ecosystems in several European countries, and use structural equation models to unravel potential drivers of plant species richness. We hypothesize that the relationships between productivity, total biomass and observed species richness are affected by management intensity, and that these effects differ between habitat types (dry grasslands, grasslands, and wetlands). We found that local management was an important driver of species richness across systems. Management caused system disturbance, resulting in reduced productivity yet enhanced total biomass. Plant species richness was directly and positively driven by management, with consistently negative effects of total biomass. Productivity effects on richness were positive, negative or neutral. Our study shows that management and total biomass drive plant species richness across real-world managed systems.


2010 ◽  
Vol 26 (1) ◽  
pp. 24-30 ◽  
Author(s):  
Alana das Chagas Ferreira Aguiar ◽  
Idelfonso Colares de Freitas ◽  
Cristina Silva Carvalho ◽  
Paulo Henrique Marques Monroe ◽  
Emanoel Gomes de Moura

AbstractIn the humid tropics, the continuous use of the same area reduces nutrient availability and increases the incidence of weeds. To circumvent these obstacles, farmers practice itinerant agriculture associated with slashing and burning with negative effects on the local and global environment. In search for a suitable system for humid tropical agriculture, the objective of this study was to investigate the performance of no-till alley cropping in conjunction with the use of annual legume crops grown during the off-season. The experiment was implemented in a one-hectare alley cropping system in which the leguminous tree clitoria (Clitoria fairchildiana R.A. Howard) was used. The experimental design consisted of randomized blocks with four replications of the following treatments: Stylosanthis (Stylosanthis capitata), showey rattlebox (Crotalaria spectabilis), sunn hemp (Crotalaria juncea), jack bean (Canavalia ensiformis) and a control with clitoria alone, without an annual legume. In January 2007 and 2008, maize was planted in each alley. One hundred and twenty days after annual legumes were sown, the total biomass was recorded. Weed incidence was assessed 35 days after maize planting. Analyses of the C, N, P, K, Ca and Mg contents of the legumes were carried out. To assess soil organic matter (SOM), composite soil samples from the surface 0–5 cm were collected from experimental plots. Two adjacent areas were also sampled for comparison: a 10-year-old secondary forest and an area of conventional tillage. The SOM was fractionated using a densitometric and a granulometric method. Conventional systems reduce the silt and free light organic matter fractions more than no till. The use of annual legumes changes the composition of the weed community, replacing the more aggressive types with those less competitive. The use of showy rattlebox (C. spectabilis) may be an effective strategy for reducing weed density in the long-season crop. Furthermore, relative to the use of leguminous trees alone, higher yields of maize can be obtained with the use of showy rattlebox (C. spectabilis) and sunn hemp (C. juncea) without the application of additional N.


2021 ◽  
Vol 12 (3) ◽  
pp. 211-215
Author(s):  
Asif Mohammad ◽  
◽  
Anupam Chatterjee ◽  

Indiscriminate and unscientific application of chemical fertilizers and pesticides, adversely affect the agricultural production system by damaging soil health, contaminating natural water bodies and ground water. As a result of prolonged use of excessive chemical fertilizers and pesticides, the yield of field crops are decreasing due to poor soil health and produced crops also adversely impact human health. For animal husbandry enterprise, fodder production is one of the major activities. Injudicious use of chemicals can reduce fodder production as well as productivity of livestock can also be reduced. Under these circumstances, demonstration of fodder berseem and oats cultivation by using biofertilizers and biopesticides were carried out in farmer’s field at three blocks of Nadia district of West Bengal, India. The study was conducted in the winter season of the year 2020-21; the selected farmers were trained and method demonstrations of fodder crop production were carried out. The demonstration results suggested that average yield of berseem fodder crop was 53.33±2.80 t ha-1 whereas oats fodder crop was 43.07±2.16 t ha-1. The BC ratio of fodder crop cultivation suggested that, by the cultivation of both fodder crops farmers got substantial economic return. Fodder produced by the using biofertilizers and biopesticide contain good amount of dry matter as well as crude protein. From the study it can be concluded that both the fodder crops can be grown in the farmers’ field of the study area by using the biofertilizers and biopesticide without deteriorating the fodder yield and fodder quality.


Author(s):  
Francisco H. R. Costa ◽  
Geovana F. Goes ◽  
Murilo de S. Almeida ◽  
Clarissa L. Magalhães ◽  
José T. M. de Sousa ◽  
...  

ABSTRACT Irrigation with saline water affects the agronomic performance of the maize crop; however, the use of vegetal mulch may mitigate salt stress and promote an increase in yield. In this way, this study aimed to evaluate the grain yield of the maize plants submitted to different water salinity levels in the presence and absence of mulch. The experiment was conducted in a randomized block design arranged in a 2 × 2 factorial scheme. The first factor was the salinity of the irrigation water (1.0 and 4.0 dS m-1) and the second, with and without mulch, and five replicates. The variables analyzed were: unhusked ear mass, husked ear mass, cob mass, straw mass, husked ear diameter, husked ear length, and yield. The irrigation water with higher electrical conductivity affects negatively the ear mass with and without straw, ear diameter and ear length. The use of vegetation cover on the soil increased the unhusked ear mass with and without straw, ear diameter and length. The water with higher salinity (4.0 dS m-1) reduces the maize grain yield but with less intensity in the presence of mulch.


Author(s):  
Alexandra da Silva Martinez ◽  
Edleusa Pereira Seidel ◽  
Renan Pan ◽  
Tauane Santos Brito ◽  
Wesler Meiners Caciano

Aims: The objective was to carry the phytosociological survey of spontaneous plants in the agroecological maize crop cultivated with intercalar cover plants in the summer and fall/winter harvest. Study Design: The experimental design used was of randomized blocks with subdivided plots in the time 4x2x2, with 5 replicates. Place and Duration of Study: The experiment was conducted in a farm, located in Missal – PR, managed in agroecological system since 2009. Methodology: The crop modalities used were maize + pigeon pea, maize + showy rattlepod, maize + jack bean and monoculture (control), being evaluated during summer and fall/winter seasons, at 30 and 70 days after emergence.  Frequency, abundance, and density of plants per linear meter and the importance value index (IVI) were determined in a 1 m² area. Results: The specie Commelina benghalensis L. and Leonorus sibiricus L, were the plants with the highest IVI for the crop modalities maize + pigeon pea and maize + showy rattlepod. Conclusion: The cultivation of maize with cover crops, mainly showy rattlepod, may be a recommended management to reduce spontaneous plants in maize in the agroecological system. Aims: The objective was to carry the phytosociological survey of spontaneous plants in the agroecological maize crop cultivated with intercalar cover plants in the summer and fall/winter harvest. Study Design: The experimental design used was of randomized blocks with subdivided plots in the time 4x2x2, with 5 replicates. Place and Duration of Study: The experiment was conducted in a farm, located in Missal – PR, managed in agroecological system since 2009. Methodology: The crop modalities used were maize + pigeon pea, maize + showy rattlepod, maize + jack bean and monoculture (control), being evaluated during summer and fall/winter seasons, at 30 and 70 days after emergence.  Frequency, abundance, and density of plants per linear meter and the importance value index (IVI) were determined in a 1 m² area. Results: The specie Commelina benghalensis L. and Leonorus sibiricus L, were the plants with the highest IVI for the crop modalities maize + pigeon pea and maize + showy rattlepod. Conclusion: The cultivation of maize with cover crops, mainly showy rattlepod, may be a recommended management to reduce spontaneous plants in maize in the agroecological system.


Sign in / Sign up

Export Citation Format

Share Document