Fermentative characteristics and chemical composition of cochineal nopal cactus silage containing chemical and microbial additives

Author(s):  
W. C. C. S. Sá ◽  
E. M. Santos ◽  
J. S. de Oliveira ◽  
G. G. L. de Araujo ◽  
A. F. Perazzo ◽  
...  

Abstract The objective of this study was to evaluate the fermentative characteristics and chemical composition of cochineal nopal cactus silage additives with urea or Lactobacillus buchneri (LB), as well as the association of both additives in four storage times (7, 15, 60 and 120 days) and during aerobic stability, with evaluations at 0, 48 and 96 h. Four silages were used: no additive, addition of 2% urea, addition of LB and addition of 2% urea and LB. The study was divided into two experiments: the first experiment evaluated the silages at different storage times, and the second experiment evaluated the silages during the aerobic stability test. In both experiments, the experimental design was completely randomized in a factorial scheme (4 × 4 and 4 × 3) with three replicates per treatment. After the ensiling process, lactic acid bacteria predominated in all treatments. The concentration of lactic acid increased significantly from 60 days of ensiling. The concentration of acetic acid varied significantly between the storage times only for the silages treated with urea and LB alone. The silage treated with urea maintained a constant pH value up to 120 days of storage. During the 96 h aerobic stability test, no breaking in the stability of silages was observed. The exclusive or associated use of urea and LB promotes improvement in the fermentative characteristics of cochineal nopal cactus silage, without major alterations in the chemical composition or interfering with the aerobic stability of the silages.

Author(s):  
Mevi Irianti Tonapa ◽  
Rani Dewi Pratiwi ◽  
Elsye Gunawan

Kenop Flower (Gomphrena globosa L.) is used in the manufacture of lip cream because contains betacyanin pigments that function as color pigments. This study aims to determine the physical quality and stability of the lip cream preparation of the ethanol extract of kenop flower (Gomphrena globosa L.). This research was conducted experimentally, including the manufacture of lip cream formulations with ethanol extract of kenop flower (Gomphrena globosa L.) with a concentration of 10%. The results of the physical examination test for lip cream preparations for all preparations have a distinctive vanilla aroma with a semi-solid texture, F0 has ivory white color and F1-F3 has a brown color. The preparations had a homogeneous composition, average pH 6-7, had good greasing power, 5.0-5.8 average dispersion and 60.33-66.67 seconds average adhesion. The stability test carried out on day 28 found that all preparations were stable, had a distinctive vanilla aroma with a semi-solid texture, F0 had ivory white color and F1-F3 had a brown color. The preparation has a homogeneous composition; the average pH is 6-7. Where the lip cream formulas F1 and F3 decreased the pH value on the 28th day from 7 to 6 but tended to be stable and in the pH range that matched the lip pH. And there is no phase separation in all formulas.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
SAMSUL RIZAL ◽  
Suharyono Suharyono ◽  
Fibra Nuariny ◽  
Julfi Restu Amelia

Abstract. Rizal S, Suharyono, Nurainy F, Amela JR. 2020. The effects of low-temperature storage on the viability of Lactobacillus casei and the stability of antibacterial activity in green grass jelly synbiotic drinks. Biodiversitas 21: 3826-3831. Synbiotic drinks from green grass jelly have shown antibacterial activity against pathogenic bacteria. These are usually stored at low temperatures to maintain their characteristics. The aim of this study was to determine the effect of storage at low temperature of 10°C on the viability of lactic acid bacteria (Lactobacillus casei) and the stability of the antibacterial activity in synbiotic drinks made of green grass jelly. Antibacterial activity of green grass jelly synbiotic drink was conducted against pathogenic bacteria (Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Escherichia coli). The products were stored for 28 days at 10°C temperature. Observations on the antibacterial activity, pH value, total acid, and total lactic acid bacteria were carried out every 7 days. Antibacterial activity was evaluated using agar well diffusion method. The results showed that storage at low temperature (10 ± 2°C) for 28 days decreased the antibacterial activity and pH value but sharply increased total lactic acid bacteria (at 0 to 7 days of storage) in green grass jelly synbiotic drinks. Salmonella sp. showed the highest inhibition caused by the antibacterial agents in green grass jelly synbiotic drinks while the lowest inhibition was found on Staphylococcus aureus. During storage at low temperature, green grass jelly synbiotic drinks had a total of lactic acid bacteria that ranged from 9.51 to 10.10 (Log CFU/mL) or equal to 3.24x109-1.26x1010 CFU/mL; a total of lactic acid that ranged from 0.48% to 0.87%; and pH values that ranged from 3.78 to 4.08.


2019 ◽  
Vol 43 (3) ◽  
Author(s):  
Okti Widayati ◽  
Zaenal Bachruddin ◽  
Chusnul Hanim ◽  
Lies Mira Yusiati ◽  
Nafiatul Umami

The objective of this study was to determine the activity and the stability of bacteriocin from lactic acid bacteria (BAL) isolated from rumen fluid of thin-tail sheep under the temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). Lactic acid bacteria obtained by isolation, selection, and identification of thin-tailed sheep rumen fluid were used for bacteriocin production. The crude bacteriocin was partially purified using 70% ammonium sulfate, then was dialysis for 12 hours. The obtained bacteriocin then tested its inhibitory activity against E.coli (representing Gram-negative) and S. aureus (representing Gram-positive) under temperature (80, 100, and 121°C), pH (3, 7, and 10), and the length of storage (for 2 weeks under the temperature -8, 11, and 29°C). The data of bacteriocin activity based on pH, temperature, and the length of storage were analyzed with factorial, then when there was a significant difference of variable because treatment was continued with Duncan's Multiple Range Test (DMRT) test. The results showed that the bacteriocin activity of the three types of BAL against S.aureus is greater than E.coli. The highest activity was shown in pH 3, while the lowest activity was shown at pH 10 (P<0.01). The highest activity was shown at a heating temperature of 100°C, while the lowest activity was shown at a heating temperature of 80°C (P<0.01). The activity of bacteriocin produced by BAL 0 A, BAL 1 A, and BAL 4 C tended to be stable to the heating temperature of 80, 100, and 121°C but decreased with increasing pH value (pH 3, 7, and 10). The best of bacteriocin activity was found at pH 3 (acid), heating at 100°C, and stored at -8°C for 14 days.


2018 ◽  
Vol 58 (10) ◽  
pp. 1860 ◽  
Author(s):  
XianJun Yuan ◽  
AiYou Wen ◽  
Jian Wang ◽  
JunFeng Li ◽  
Seare T. Desta ◽  
...  

This study was carried out to assess the effects of adding Lactobacillus plantarum, molasses or/and ethanol on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration (TMR) silage, which is well accepted in small-scale dairy farms in Tibet. Total mixed ration were ensiled in laboratory silos (1 L) and treated with (1) no additive (Control), (2) ethanol (E, 25 ml/kg fresh weight (FW)), (3) molasses (M, 30 g/kg FW); (4) Lactobacillus plantarum (L, 106cfu/g FW); (5) ethanol + molasses (EM); and (6) ethanol + Lactobacillus plantarum (EL). After 45 days of ensiling, six silos per treatment were opened for the fermentation quality and in vitro digestibility analyses, whereas 18 silos were used for the aerobic stability test for the following 9 days. All TMR silages were well preserved with dominant lactic acid (LA), low pH and ammonia nitrogen, and negligible propionic and butyric acid. The L and EL silages had the lowest pH and highest LA concentrations. The addition of ethanol did not inhibit silage fermentation as there were no significant differences for the pH, LA, acetic acid, negligible propionic acid or ammonia nitrogen content, lactic acid bacteria and yeast counts between Control and the E silage. During the aerobic stability test, pH increased by 1.39, 1.67, 1.69 and 0.74 for the Control, M, L and EM silages, but only 0.40 and 0.34 for E and EL silages, respectively. Upon exposure to air, the LA concentration in the L silage was evidently (P < 0.05) decreased, whereas LA concentration in the EL silage remained the highest value after the third day of aerobic exposure. Mean populations of aerobic bacteria and yeast in the E and EL silages were lower (P < 0.05) than those of the Control. These findings suggested that L. plantarum is effective in improving fermentation quality of TMR silages. Although the addition of ethanol in our study did not depress the fermentation of the TMR silages, it showed potential to inhibit the aerobic spoilage of TMR silages, either alone or in combination with the L. plantarum. It is concluded that L. plantarum combined with ethanol not only ensures better fermentation but also could improve aerobic stability.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 335
Author(s):  
Ana Paula Maia dos Santos ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal de Araújo ◽  
Juliana Silva de Oliveira ◽  
Anderson de Moura Zanine ◽  
...  

The current study aimed to evaluate the application effects of the preactivated Lactobacillus buchneri and urea on the fermentative characteristics, chemical composition and aerobic stability in corn silages. The design was completely randomized, in a 6 × 5 factorial arrangement, with six types of additive and five opening times. The treatments consisted of corn silage; corn silage with freeze-dried inoculant; corn silage with freeze-dried inoculant +1.0% urea; corn silage with activated inoculant; corn silage with activated inoculant +1.0% urea, and corn silage with 1.0% urea. Populations of lactic acid bacteria stabilized at the 70th day, with average values of 8.91 and 9.15 log cfu/g for corn silage with freeze-dried inoculant +1.0% urea and corn silage with freeze-dried inoculant, respectively. In contrast, the silages without additives showed significantly lower values of 7.52 log cfu/g forage at the 70th day. The silages with urea (isolated or associated with the inoculant) increased the total nitrogen content. The maximum temperature values were highest in the corn silages without additives, indicating that these silages were more prone to deterioration. The use of Lactobacillus buchneri activated proved to be more efficient in improving the fermentative profile of corn silages than the freeze-dried inoculant. The use of urea as an additive reduced the losses and improved the nutritional value and aerobic stability of corn silages. Additionally, the combination of Lactobacillus buchneri activated and urea may be used as a technique to improve the fermentative profile, chemical composition and aerobic stability of corn silages.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1283
Author(s):  
Zhiqiang Sun ◽  
Tingting Jia ◽  
Run Gao ◽  
Shengyang Xu ◽  
Zhe Wu ◽  
...  

The objective of this experiment was to evaluate the effects of the chopping length and additive on the fermentation characteristics and aerobic stability in silage of Leymus chinensis. L. chinensis was chopped to 1–2 cm and 4–5 cm, and immediately ensiled with the three treatments, i.e., 2% sucrose (fresh weight basis; SU), 1 × 105 cfu/g Lactobacillus plantarum (LP) or 1 × 105 cfu/g LP plus 2% sucrose (SU+LP). Silage treated with distilled water served as the control. After silage processing for 30 and 90 d, the fermentation quality of L. chinensis silage was evaluated. The composition of the fermentation products and the pH value in the silage were determined at 1, 3, 5 and 7 d after opening the silo. The results showed that in L. chinensis silage there was a lower pH value, higher lactic acid content and better aerobic stability at the 1–2 cm length than those at the 4–5 cm (p < 0.001). When the chopping length was 4–5 cm, the addition of either LP or SU+LP increased the content of lactic acid and acetic acid, and decreased the pH value and butyric acid content, compared to those of the control and SU treatment (p < 0.001). Furthermore, combination treatment of SU+LP performed better than LP alone, and the aerobic stability time of L. chinensis silage at 4–5 cm without any additives was the worst. In conclusion, enhanced fermentation quality and aerobic stability can be obtained by processing L. chinensis silage with the shorter length. When the L. chinensis is cut longer, e.g., 4–5 cm in this study, LP or SU+LP could be used as an effective method to improve the fermentation quality and aerobic stability of L. chinensis silage.


2013 ◽  
Vol 29 (2) ◽  
pp. 399-404
Author(s):  
V. Vukovic ◽  
M. Vicentijevic ◽  
N. Plavsa

In the stability test of the mastitis reagent ad us.vet., as the finished product, three production series were tested in quantities of 500 ml of the sample, under appropriate storage conditions. For the testing, the appropriate uniformity of temperature and relative humidity was provided. Also, the procedure of the stability test was determined, which included the initial state, then every three months until the end of the first trial and a final testing at the end of shelf life (0, 3, 6, 9, 12 and 18 months). Of the tested parameters the following were included: appearance, pH value of the solution, dry residue (in %) and microbiological purity.


2013 ◽  
Vol 29 (1) ◽  
pp. 105-114
Author(s):  
B. Dinic ◽  
N. Djordjevic ◽  
D. Terzic ◽  
M. Blagojevic ◽  
J. Markovic ◽  
...  

In this experiment, wilted masses of red clover of cultivar K-17 from the first cut was ensiled in three treatments: a) no additives, b) with the addition of corn (6% of biomass) and c) with the addition of inoculant BioStabil Plus. The experiment design was according to the method of a completely random plan (single factorial trial) in triplicates. Based on the results it can be concluded that the wilted biomass of red clover can be successfully ensiled without additives. However, the inoculation of red clover biomass achieves the most favourable pH value (4.20), the lowest level of degradation of the protein expressed in the amount of NH3-N (107.7 gkg-1 N), the largest production of lactic acid (91.3 gkg-1 DM) and acetic acid (42.6 gkg-1 DM), in the absence of butyric acid. Adding maize meal in the amount of 6% contributed to somewhat more favourable fermentation and increase of the energy value of silage. When using the DLG and Weissbach methods for assessing the quality of silage, all silages were classified into the first class. Contrary to this, according to the Zelter method, control and inoculated silages were evaluated as class III, because of the large amounts of acetic acid. In practices inoculants based on homo-and hetero-fermentative bacteria of lactic acid fermentation are recommended for use, because the increased production of acetic acid contributes positively to te aerobic stability of silage.


Author(s):  
D. M. Pereira ◽  
E. M. Santos ◽  
J. S. Oliveira ◽  
F. N. S. Santos ◽  
R. C. Lopes ◽  
...  

Abstract The current study aimed to evaluate the effects of cactus pear as a moistening additive on fermentative and microbiological characteristics, aerobic stability (AS), chemical composition and in situ rumen degradability of corn grain silage at different opening times. A completely randomized experimental design was adopted in a 4 × 3 factorial scheme with four levels of dry matter (DM) (50; 60; 70 and 80% of DM) and three opening times (30; 60 and 120 days after ensiling), with four replications. There was an effect of interaction (P < 0.05) between the DM levels and opening times on silage yeast population, effluent losses, gas losses, dry matter recovery (DMR), AS of the silage and on lactic acid bacteria, mould and yeast populations after AS trial. The 60% DM level presented DMR values above 930 g/kg of DM. However, the lowest AS time (96.52 h) was observed in silages with 60% DM at 60 days after ensiling, although all silages have shown high AS. The DM in situ degradability of the ensiled mass increased after the ensiling process at all DM levels and opening times, with the 60% DM content showing the best result. When using cactus pear as a corn grain moistening additive, the 60% DM level is recommended when the opening time is up 120 days.


1969 ◽  
Vol 83 (3-4) ◽  
pp. 135-151
Author(s):  
José L. Martínez ◽  
Abner A. Rodríguez ◽  
Federico Arias ◽  
Raúl Macchiavelli ◽  
Ernesto O. Riquelme

An experiment was conducted to evaluate the effectiveness of a commercial lactic acid-producing bacteria! inoculant (LAPBI) applied at 0, 1, and 2 times the recommended rate to improve the fermentation characteristics and aerobic stability of grain sorghum (Sorghum bicolor var Jupiter) ensiled in a tropical environment.The sorghum was harvested at 90 d of growth and chopped into 2.5-cm pieces. At ensiling, three treatments were imposed: no additive (control), and LAPBI applied at the recommended (5.477 cfu/g of fresh forage) or higher rate (5.788 cfu/g of fresh forage). Three silos per treatment were opened after 0, 2, 4, 7, 14, 28, and 56 d of fermentation, and silage was analyzed for pH, chemical composition and fermentation end-products. Addition of the LAPBI did not markedly influence the chemical composition of the silages at either rate. It did increase the acidity and acetic acid content during early stages of fermentation, and the lactic acid content at 56 d post-ensiling, but did not reduce the deterioration of silage after exposure to air. It is concluded that use of the LAPBI, applied at the recommended rate, partially improved the fermentation characteristics of the grain sorghum silage, but did not enhance its aerobic stability. Doubling the application did not produce beneficial effects.


Sign in / Sign up

Export Citation Format

Share Document