The associative effect of level of energy and protein intake in the dairy cow

1970 ◽  
Vol 37 (3) ◽  
pp. 481-491 ◽  
Author(s):  
F. J. Gordon ◽  
T. J. Forbes

SummaryEight lactating cows were used in a Latin square experiment, to study the associative effects of level of energy and protein intake on milk yield and composition. Four diets were used, supplying 80 and 120% of estimated energy requirements and 80 and 120% of estimated protein requirements. The level of energy intake significantly affected milk yield, milk energy output, percentage butterfat, ash and non-protein nitrogen. The level of protein intake only significantly affected milk energy output and the non-protein nitrogen content of the milk. Although only the interaction of the effects of energy and protein intake on the milk content of solidsnot-fat (SNF) and ash was significant, it was evident that the effect of each of these factors on milk yield or composition was related to the level of the other in the diet.Input-output relationships within each protein level were used to compute the response in milk energy output and bodyweight change to a change in energy intake. These showed a greater partitioning of additional energy toward milk energy output with the high than with the low protein level. Multiple regression analysis within each level of protein intake was used to partition energy intake between that used for maintenance, milk energy output and liveweight change. The results showed efficiencies of utilization of metabolizable energy for milk output of 63 and 50% on the high- and low-protein diets, respectively.Nitrogen balance data are presented.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 340-341
Author(s):  
Hansol Kim ◽  
Jung Yeol Sung ◽  
Beob G Kim

Abstract The objective was to investigate the influence of crude protein (CP) concentrations in the basal diet on the metabolizable energy (ME) of feed ingredients determined using the difference procedure in pigs. Twelve barrows (73.7 ± 5.5 kg body weight) individually housed in metabolism crates were used. A low-protein basal diet (LPBD, 7.4% CP) was composed of 97.5% corn as the sole energy source and a high-protein basal diet (HPBD, 14.3% CP) was composed of 78.0% corn and 19.6% soybean meal. Four additional diets were prepared by replacing 20% of the energy sources in the basal diets with full-fat soybean (FFSB, 37.7% CP) or soy protein isolate (SPI, 87.6% CP). The 6 experimental diets were fed to 12 pigs employing a replicated 6 × 4 incomplete Latin square design with 4 periods. Each period was consisted of 4 days of adaptation and 4 days of collection period and the marker-to-marker method was used for fecal collection. Urinary gross energy output was greater (243 vs. 176 kcal/d; P < 0.05) in the HPBD group compared with the LPBD group. While ME in the HPBD was greater (3,418 vs. 3,322 kcal/kg; P < 0.05) than in the LPBD, ME in FFSB diets (3,585 and 3,633 kcal/kg in the LPBD and HPBD group, respectively) and SPI diets (3,537 and 3,537 kcal/kg, respectively) were not different between the 2 basal diet groups. Metabolizable energy of the test ingredients was less (P < 0.05) in pigs fed the HPBD group (4,565 and 4,111 kcal/kg in FFSB and SPI, respectively) compared with pigs fed the LPBD group (4,756 and 4,517 kcal/kg in FFSB and SPI, respectively). In conclusion, as the protein in the basal diet increases, metabolizable energy in a test ingredient determined using the difference procedure decreases mainly due to greater urinary energy output in pigs.


1971 ◽  
Vol 38 (3) ◽  
pp. 381-391 ◽  
Author(s):  
F. J. Gordon ◽  
T. J. Forbes

SummaryThirty-six lactating cows were used in a 3×2 factorial design experiment to study the effects of level of energy and fibre intake on milk yield and composition over an 8-week experimental period. Three levels of fibre intake — 1g of crude fibre per 25, 17·5 and 10 kcal of estimated metabolizable energy (ME) requirements — were given in diets supplying both 80 and 100% of energy requirements. The level of energy intake significantly affected milk yield, milk energy output and the percentage solids-not-fat (SNF) and protein in the milk. The effects of fibre intake on both milk yield and milk energy output were marked but not significant. Fibre intake had a significant curvilinear effect on both the SNF and protein in the milk with the highest fibre intake resulting in a significant decrease in both fractions. A significant linear decrease was obtained in the lactose fraction as the fibre intake increased.The total volatile fatty acid (VFA) level in the rumen was significantly affected by both energy and fibre intake. The level of energy intake only significantly affected the proportion of propionic acid. Fibre intake significantly affected the proportion of both acetic and butyric acids resulting in mean proportions of acetic acid of 66, 70 and 72 at the low, medium and high fibre intakes. The correlations between the rumen acids and lactation efficiencies are also presented.Multiple regression analysis within each fibre level has been used to partition the ME available for production between that used for milk energy output and liveweight change. The results showed efficiencies of utilization of ME for milk output of 66, 65 and 56 on the low, medium and high fibre diets respectively.Nitrogen balance data are presented.


Author(s):  
Ni Nyoman Suryani ◽  
I Wayan Suarna ◽  
Ni Putu Sarini ◽  
I Gede Mahardika

To determine the effect of energy levels on digestible nutrient, milk production and milk quality of 7 months pregnant Bali cattle, was the purpose of this study. The study was conducted in Bali, Province of Indonesia on 12 pregnant breeding phase of pre-calving (2 months before the birth) with the parent body weight 329-340 kg/head. The treatment given is four types of Metabolizable Energy (ME) levels: 2000, 2100, 2200 and 2300/kg respectively as treatment A, B, C, and D. All ration contain 10% of crude protein. Variables measured: energy intake, digestible nutrient, milk yield, and milk quality. This research is a randomized block design. The results showed that increase energy ration until 2300 kcal ME/kg would significantly (P<0.05) increase energy intake and highest at cattle consumed ratio D is 22239.55 kcal/day. However, digestible nutrient was not affected. Milk production increased with increasing energy rations and highest (P<0.05) at cattle received treatment D is 2179.83 ml/day compared to treatment A 936.67 ml/day. Milk fat and milk lactose also highest (P<0.05) in treatment D are 8.56% and 4.76% respectively. Based on these results, it can be concluded that increase energy ration will increase energy intake, milk yield and milk fat and milk lactose of Bali cattle. 


Author(s):  
Ailema González-Ortiz ◽  
Hong Xu ◽  
Samuel Ramos-Acevedo ◽  
Carla M Avesani ◽  
Bengt Lindholm ◽  
...  

Abstract Background Patients undergoing haemodialysis (HD) are often discouraged from eating fruits and vegetables because of fears of hyperkalaemia and undernutrition, yet evidence to support these claims is scarce. We here explore the association between adherence to a healthy plant-based diet with serum potassium, surrogates of nutritional status and attainment of energy/protein intake targets in HD patients. Methods We performed an observational single-centre study of stable patients undergoing HD with repeated dietary assessment every 3 months. Patients were provided with personalized nutritional counselling according to current guidelines. The diet was evaluated by 3-day food records and characterized by a healthy plant-based diet score (HPDS), which scores positively the intake of plant foods and negatively animal foods and sugar. The malnutrition inflammation score (MIS) and serum potassium were also assessed at each visit. We used mixed-effects models to evaluate the association of the HPDS with markers of nutritional status, serum potassium levels and attainment of energy/protein intake targets. Results After applying inclusion and exclusion criteria, a total of 150 patients contributing to 470 trimestral observations were included. Their mean age was 42 years [standard deviation (SD) 18] and 59% were women. In multivariable models, a higher HPDS was not associated with serum potassium levels or odds of hyperkalaemia {potassium &gt;5.5 mEq/L; odds ratio [OR] 1.00 [95% confidence interval (CI) 0.94–1.07] per HPDS unit higher}. Patients with a higher HPDS did not differ in terms of energy intake [OR for consuming &lt;30 kcal/kg day 1.05 (95% CI 0.97–1.13)] but were at risk of low protein intake [OR for consuming &lt;1.1 g of protein/kg/day 1.11 (95% CI 1.04–1.19)]. A higher HPDS was associated with a lower MIS, indicating better nutritional status. Conclusions In patients undergoing HD, adherence to a healthy plant-based diet was not associated with serum potassium, hyperkalaemia or differences in energy intake. Although these patients were less likely to reach daily protein intake targets, they appeared to associate with better nutritional status over time.


1999 ◽  
Vol 132 (4) ◽  
pp. 483-490 ◽  
Author(s):  
C. P. FERRIS ◽  
F. J. GORDON ◽  
D. C. PATTERSON ◽  
M. G. PORTER ◽  
T. YAN

Sixty Holstein/Friesian dairy cows, 28 of high genetic merit and 32 of medium genetic merit, were used in a continuous design, 2 (cow genotypes)×4 (concentrate proportion in diet) factorial experiment. High and medium merit animals had Predicted Transmitting Abilities for milk fat plus protein yield, calculated using 1995 as the base year (PTA95 fat plus protein), of 43·3 kg and 1·0 kg respectively. Concentrate proportions in the diet were 0·37, 0·48, 0·59 and 0·70 of total dry matter (DM), with the remainder of the diet being grass silage. During this milk production trial, 24 of these animals, 12 from each genetic merit, representing three animals from each concentrate treatment, were subject to ration digestibility, and nitrogen and energy utilization studies. In addition, the efficiency of energy utilization during the milk production trial was calculated.There were no genotype×concentrate level interactions for any of the variables measured (P>0·05). Neither genetic merit nor concentrate proportion in the diet influenced the digestibility of either the DM or energy components of the ration (P>0·05). When expressed as a proportion of nitrogen intake, medium merit cows exhibited a higher urinary nitrogen output and a lower milk nitrogen output than the high merit cows. Methane energy output, when expressed as a proportion of gross energy intake, was higher for the medium than high merit cows (P<0·05), while urinary energy output tended to decrease with increasing proportion of concentrate in the diet (P<0·05). In the calorimetric studies, neither heat energy production, milk energy output and energy retained, when expressed as a proportion of metabolizable energy intake, nor the efficiency of lactation (kl), were affected by either cow genotype or concentrate proportion in the diet (P>0·05). However when kl was calculated using the production data from the milk production trial the high merit cows were found to have significantly higher kl values than the medium merit cows (0·64 v. 0·59, P<0·05) while k l tended to fall with increasing proportion of concentrate in the ration (P<0·05). However in view of the many assumptions which were used in these latter calculations, a cautious interpretation is required.


1990 ◽  
Vol 51 (1) ◽  
pp. 1-13 ◽  
Author(s):  
C. S. Mayne

ABSTRACTHerbage from the first regrowth of perennial ryegrass based swards was direct-ensiled following treatment with either an inoculant of Lactobacillus plantarum (Ecosyl, Imperial Chemical Industries pic) at 3·0 1/t, formic acid (850 g/kg) at 2·9 1/t, or no additive (control). During harvesting, alternate loads of inoculant material were treated with an absorbent polymer (ammonium polyacrylamide) at the rate of 1 kg/t herbage and ensiled in separate 100-t capacity silos. The mean dry matter (DM) and water soluble carbohydrate concentrations of herbage used for the four treatments was 157 and 120 g/kg respectively. Lactic acid levels post ensiling increased more rapidly in inoculant-treated herbage than with the other treatments. Formic acid and inoculant-treated silages were well preserved whereas control and inoculant-plus-polymer silages were only moderately well preserved. Losses of DM during ensilage were greater with the formic acid treatment with DM recovery values of 0·78, 0·72, 0·76 and 0·73 for the control, formic acid, inoculant and inoculant-plus-polymer silages respectively. Treatment of herbage with an absorbent polymer prior to ensiling resulted in a proportional reduction in effluent volume of 0·2 whereas formic acid treatment increased effluent flow by 0·28. The silages were evaluated in a changeover design experiment with two periods each of 4 weeks duration, using 24 British Friesian dairy cows. Animals were housed in individual stalls and in addition to the treatment silages, received 5 kg/day of supplement containing 193 g crude protein per kg DM. Silage intakes were increased by proportionately 0·10, 0·14 and 0·05 respectively with the formic acid, inoculant and inoculant-plus-polymer treatments compared with the control. The increased silage intakes with the inoculant treatment were reflected in an increased milk yield of 1·1 kg milk per day whereas formic acid and inoculant-plus-polymer treatments had no significant effect, although formic acid treatment did result in a significant increase in milk fat concentration. There were no major differences between treatments in energy or nitrogen digestibility, when determined on a complete ration basis. In conclusion, a large milk yield response was obtained as a result of treatment of herbage with inoculant prior to ensiling and this resulted from increased silage and hence energy intake. Treatment with formic acid increased silage and energy intake but had no effect on milk energy output.


1993 ◽  
Vol 56 (3) ◽  
pp. 301-310 ◽  
Author(s):  
E. J. Smith ◽  
A. R. Henderson ◽  
J. D. Oldham ◽  
D. A. Whitaker ◽  
K. Aitchison ◽  
...  

AbstractThree silages were prepared from the primary growth of a predominantly perennial ryegrass sward (dry matter (DM) 175 g/kg; crude protein 142 g/kg DM; water-soluble carbohydrates (WSC) 243 g/kg DM). Herbage was wilted for 24 h and then treated with either an inoculant/enzyme preparation (Lactobacillus plantarum, Streptococcus faecium and Pediococcus acidilactici), formic acid applied at 4·2 lit (Add F, BP Chemicals) or no additive. Time series analysis of laboratory silages revealed that different patterns of fermentation had been achieved: formic acid treatment resulted in high levels of residual WSC and low levels of lactic acid, indicative of an inhibited fermentation, whilst treatment with the inoculant/enzyme preparation resulted in high levels of lactic acid with a low level of residual sugars, as expected with an enhanced fermentation. Analysis of the material ‘as fed’ showed that losses in the WSC content of the formic acid-treated silage had occurred in the clamp. Secondary fermentation of lactic to acetic acid was apparent in the untreated silage, but not in the inoculant/enzyme-treated silage. Digestibility, as determined using Greyface wether lambs, was marginally higher for both additive treatments when compared with the untreated silage. An evaluation of the silages for milk production was carried out at three levels of concentrate supplementation using 18 Ayrshire × British Friesian cows in a replicated 3×3 Latin-square design experiment. Treatment with formic acid resulted in significantly higher DM intakes, but this was not reflected in milk energy output. Cows offered the inoculant/enzyme-treated silage partitioned energy away from milk production toward body tissue deposition (average milk yields 19·9, 19·9 and 15·2 kg/day, and weight gain 0·26, 0·38 and 0·81 kg/day for the untreated, formic acid and inoculant/enzyme-treated silages respectively). The reason for this is not clear, but it is postulated that microbial capture of degraded nitrogen may have been impaired with the inoculant/enzyme-treated silage, resulting in an imbalance in metabolizable protein: metabolizable energy.


1945 ◽  
Vol 82 (1) ◽  
pp. 65-76 ◽  
Author(s):  
S. C. Madden ◽  
W. A. Clay

Adult dogs were given a proteinless diet plus casein, 80 calories/kilo, 0.4 gm. nitrogen/kilo/day. Sterile controlled inflammation was produced by subcutaneous injection of turpentine. The reaction is characterized by local swelling, induration, and abscess formation, terminated by rupture or incision after 3 to 5 days and by general reactions of malaise, fever, leucocytosis, and increased urinary nitrogen. For 3 to 6 days after turpentine the nitrogen intake was provided in seven experiments by amino acids given parenterally (a solution of the ten essential amino acids (Rose) plus glycine). A normal dog with a normal protein intake showed a negative nitrogen balance after turpentine—urinary nitrogen doubled even as in inflammation during fasting. A protein-depleted dog (low protein reserves produced by very low protein intake) given a normal protein intake after turpentine maintained nitrogen balance—urinary nitrogen rose only slightly. With a high (doubled) protein intake the depleted dog showed strongly positive balance. Normal dogs with high (doubled) protein intakes react to turpentine with doubled urinary nitrogen outputs on individual days and therefore are maintained in approximate nitrogen balance and weight balance. This end may be achieved equally well or better by oral feeding, when such is possible and absorption unimpaired. The increased nitrogen excretion after injury is again shown directly related to the state of body protein reserves. Increased catabolism not inhibition of anabolism best explains the excess urinary nitrogen. Protection during injury of valuable protein reserves appears possible through an adequate intake of protein nitrogen.


1975 ◽  
Vol 33 (2) ◽  
pp. 277-289 ◽  
Author(s):  
K. J. McCracken

1. The deposition of fat and protein and the utilization of energy by growing rats offered diets ad lib. or in controlled amounts by gastric intubation has been investigated. Diets contained 50, 75, 100 or 200 g protein/kg, mainly as caseinGain of body-weight and protein increased with increasing dietary protein concentration when animals received the same energy intake, although the reverse was true for fat deposition. However, the differences in live-weight gain were almost entirely due to changes in body water. The dry-matter content of the gain in animals given low-protein diets was 770 g/kg compared to 360 g/kg in those given the control diet2. Energy retention was unaffected by dietary protein level in groups given the same energy intake by gastric intubation. In Expt 1 daily heat production increased significantly (P < 0·05) with increasing protein level (50, 75 and 200 g protein/kg diet) when energy intake was constant, but in Expt 2 there was no significant effect of protein level (50, 100 and 200 g protein/kg diet). Problems arose in the selection of a suitable basis for comparison of heat production between groups because of the differences in body-weight and body composition3. The energy requirement for zero energy balance was approximately 10% lower for the low-protein groups than for those given the diet containing 200 g protein/kg when food intake was just above the maintenance level. When the requirement was expressed per unit metabolic body size (W0·75 kg) dietary protein level had no significant effect. The mean values for Expts 1 and 2 were 452 and 436 kJ respectively4. The energy cost of weight gain increased as dietary protein level decreased in pairs of groups gaining at the same rate. The extra energy ingested by the animals given the lower protein level was converted to body tissue with an efficiency of at least 0·705. Striking differences were observed in body composition and energy retention of the two pairs of groups used for the comparison of tube-feeding and ad lib. feeding. With the diet containing 50 g protein/kg, tube-fed rats gained significantly more weight (P < 0·01) and more fat, dry matter and energy (P < 0·001) than their ad lib. counterparts given an iso-energetic intake6. The results demonstrate that dietary protein level has little or no effect on the utilization of energy by growing rats when the pattern of intake is controlled by gastric intubation.


Author(s):  
Rosemary Mansbridge

It has been reported (Castlejon and Leaver 1990, Hill and Leaver 1991) that when offered as the sole forage intakes of urea treated whole crop cereals (UWCC) were high. However energy output in milk and liveweight change was less than expected from calculations of energy intake.The level of crude protein (CP) in UWCC is high, typically in the range 200-300 g CP/kg DM. It has been suggested that a non-synchronous supply of available energy and rapidly available nitrogen to the rumen microorganisms was responsible for the low efficiency of utilization reported.The work described here was carried out to determine whether the utilization of diets containing UWCC could be improved by increasing the supply of readily available carbohydrates to the rumen micro-organisms.


Sign in / Sign up

Export Citation Format

Share Document