Effect of polymorphisms in the leptin, leptin receptor and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes and genetic polymorphism of milk proteins on bovine milk composition

2011 ◽  
Vol 79 (1) ◽  
pp. 110-118 ◽  
Author(s):  
Maria Glantz ◽  
Helena Lindmark Månsson ◽  
Hans Stålhammar ◽  
Marie Paulsson

The relations between cow genetics and milk composition have gained a lot of attention during the past years, however, generally only a few compositional traits have been examined. The aim of this study was to determine if polymorphisms in the leptin (LEP), leptin receptor (LEPR) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes as well as genetic polymorphism of β-casein (β-CN), κ-CN and β-lactoglobulin (β-LG) impact several bovine milk composition traits. Individual milk samples from the Swedish Red and Swedish Holstein breeds were analyzed for components in the protein, lipid, carbohydrate and mineral profiles. Cow alleles were determined on the following SNP: A1457G, A252T, A59V and C963T on the LEP gene, T945M on the LEPR gene and Nt984+8(A-G) on the DGAT1 gene. Additionally, genetic variants of β-CN, κ-CN and β-LG were determined. For both the breeds, the same tendency of minor allele frequency was found for all SNPs and protein genes, except on LEPA1457G and LEPC963T. This study indicated significant (P<0·05) associations between the studied SNPs and several compositional parameters. Protein content was influenced by LEPA1457G (G>A) and LEPC963T (T>C), whereas total Ca, ionic Ca concentration and milk pH were affected by LEPA1457G, LEPA59V, LEPC963T and LEPRT945M. However, yields of milk, protein, CN, lactose, total Ca and P were mainly affected by β-CN (A2>A1) and κ-CN (A>B>E). β-LG was mainly associated with whey protein yield and ionic Ca concentration (A>B). Thus, this study shows possibilities of using these polymorphisms as markers within genetic selection programs to improve and adjust several compositional parameters.

2020 ◽  
Vol 23 (1) ◽  
pp. 13-21
Author(s):  
Rodica Ştefania Pelmuş ◽  
Cristina Lazăr ◽  
M. L. Palade ◽  
Mariana Stancu ◽  
C. M. Rotar ◽  
...  

AbstractThe aim of this study was to determine milk quality indices as well as the milk protein composition in Romanian Holstein cattle raised under the conditions of experimental farm of INCDBNA-IBNA. The study was carried out on 22 milk samples. The types of different milk proteins were identified by SDS-PAGE technique. Sampling day and milk chemical composition were performed during the milking period of studied cattle. The quality indices were breed-specific for protein (3.38%) and higher for fat (4.39%).Milk proteins analysis of Romanian Holstein cattle separated by SDS-PAGE electrophoresis showed the presence of four major caseins (αs1-, αs2-, β- and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin). The caseins accounted 77.28% of the total milk proteins, while the major proteins (β-lactoglobulin, α-lactalbumin) from the whey represented 22.72% of the total proteins. αs1-casein + αs2-casein had a higher expression (36.01%) followed by β-casein (31.45%), β-lactoglobulin (18.16%), k-casein (9.82%) and α-lactalbumin (4.56%). The most of milk samples was characterized by a medium expression level of both caseins and whey proteins


1999 ◽  
Vol 66 (4) ◽  
pp. 523-536 ◽  
Author(s):  
GERD BOBE ◽  
DONALD C. BEITZ ◽  
ALBERT E. FREEMAN ◽  
GARY L. LINDBERG

Associations among quantities and concentrations of individual milk proteins and fatty acids were determined in individual milk samples from 233 Holstein cows. Correlation coefficients among the six major proteins and the eleven major fatty acids in bovine milk were grouped hierarchically. Factor analyses grouped the milk components into seven families: fatty acids 4:0–6:0, 6:0–16:0, 16:0, 18:0, 16:1 plus 18:1 plus 18:2, all milk proteins and β-lactoglobulin alone. Correlation coefficients and groupings by factor analyses coincided with shared pathways of synthesis or genetic origins of milk proteins and fatty acids because they are the basis of the correlation coefficients. Hence, the results from correlations and factor analyses could be used to develop hypotheses for the synthesis of milk components and other coordinately regulated physiological processes.


1990 ◽  
Vol 57 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Anne-Marie Bech ◽  
K. Rotvig Kristiansen

SummaryIn milk samples from 549 cows of the breeds Danish Jersey, Red Danish Dairy Cattle (RDM), and Black and White Danish Dairy Cattle (SDM) the genetic polymorphisms of the αs1, β and K-cascin and β-lactoglobulin (β-Lg) loci were determined by isoelectric focusing in agarose gels. The results of the screening were comparcd with results obtained by Larsen & Thymann (1966). In addition, the genetic linkage of the three casein loci was studied, and the association between milk protein genotypes and yields in first and second lactations of milk, fat and protein were investigated.The distribution of genotypes of all four milk protein Systems was different from breed to breed.For Jersey cows, significant differences in the gene frequencies from the results of the 1966 investigation were found for αs1 and K-casein and β-Lg. For SDM cows a change in the K-casein frequency had occurred whereas for RDM cows no changes were found.Linkage between some of the casein loci was found within ail three breeds. For the RDM breed the possible linkage between αs1-casein and the other caseins could not be tested bccause nearly ail thc cows were homozygous for the αs1-cascin-B genotypes.β-Casein genotypes were associated with yield parameters in ail breeds. The A2A2 genotype of this protein gave higher yields of milk, fat, and protein in the second lactation than thc A1A1 genotype.


PEDIATRICS ◽  
1991 ◽  
Vol 87 (4) ◽  
pp. 439-444
Author(s):  
Patrick S. Clyne ◽  
Anthony Kulczycki

Previous studies have suggested that an unidentified cow's milk protein, other than β-lactoglobulin and casein, might play a pathogenetic role in infant colic. Therefore, a radioimmunoassay was used to analyze human breast milk and infant formula samples for the presence of bovine IgG. Milk samples from 88 of the 97 mothers tested contained greater than 0.1 µg/mL of bovine IgG. In a study group of 59 mothers with infants in the colic-prone 2- to 17-week age group, the 29 mothers of colicky infants had higher levels of bovine IgG in their breast milk (median 0.42 µg/mL) than the 30 mothers of noncolicky infants (median 0.32 µg/mL) (P &lt; .02). The highest concentrations of bovine IgG observed in human milk were 8.5 and 8.2 µg/mL. Most cow's milk-based infant formulas contained 0.6 to 6.4 µg/mL of bovine IgG, a concentration comparable with levels found in many human milk samples. The results suggest that appreciable quantities of bovine IgG are commonly present in human milk, that significantly higher levels are present in milk from mothers of colicky infants, and that bovine IgG may possibly be involved in the pathogenesis of infant colic.


2014 ◽  
Vol 77 (3) ◽  
pp. 427-434 ◽  
Author(s):  
GILLES ROBITAILLE ◽  
SÉBASTIEN CHOINIÈRE ◽  
TIMOTHY ELLS ◽  
LOUISE DESCHÈNES ◽  
AKIER ASSANTA MAFU

It is recognized that bacterial adhesion usually occurs on conditioning films made of organic macromolecules absorbed to abiotic surfaces. The objectives of this study were to determine the extent to which milk protein–coated polystyrene (PS) pegs interfere with biofilm formation and the synergistic effect of this conditioning and hypertonic growth media on the bacterial adhesion and biofilm formation of Listeria innocua, used as a nonpathogenic surrogate for Listeria monocytogenes. PS pegs were uncoated (bare PS) or individually coated with whey proteins isolate (WPI), β-lactoglobulin, bovine serum albumin, or tryptic soy broth (TSB) and were incubated in bacterial suspensions in modified Welshimer's broth. After 4 h, the number of adherent cells was dependent on the coating, as follows: TSB (107 CFU/ml) &gt; bare PS &gt; β-lactoglobulin &gt; bovine serum albumin ≈ WPI (104 CFU/ml). The sessile cell counts increased up to 24 h, reaching &gt;107 CFU per peg for all surfaces (P &gt; 0.1), except for WPI-coated PS; this indicates that the inhibitory effects of milk protein conditioning films are transient, slowing down the adhesion process. The 4-h bacterial adhesion on milk protein–coated PS in modified Welshimer's broth supplemented with salt (0 to 10% [wt/vol]) did not vary (P &gt; 0.1), indicating that conditioning with milk proteins was the major determinant for inhibition of bacterial adhesion and that the synergetic effect of salt and milk proteins on adhesion was minimal. Moreover, the presence of 5 to 10% salt significantly inhibited 24-h biofilm formation on the TSB-coated and bare PS, with a decrease of &gt;3 log at 10% (wt/vol) NaCl and almost completely depleted viable sessile bacteria on the milk protein–coated PS.


1989 ◽  
Vol 56 (2) ◽  
pp. 297-301 ◽  
Author(s):  
Douglas M. McLean ◽  
Johan Schaar

Milk protein genetic polymorphism has a major influence on the composition of milk, and on its processing properties, including yield of cheese (see Schaaret al.1985; McLeanet al.1984, 1987; McLean, 1987). However, there appears to be little information on the effects of milk protein genetic variants on syneresis of cheese curd. The effect of casein composition on syneresis was studied by Pearseet al.(1986), who found that syneresis was affected only by the level of β-casein. Syneresis is an essential requirement in cheese making from renneted or acidified milk, but is undesirable during the storage of products such as yogurt. Milk for yogurt manufacture is preheated to minimize syneresis and to give maximal firmness of the yogurt coagulum (Tamime & Deeth, 1980). Pearseet al.(1985) showed that the reduction of one-third in the extent of syneresis caused by heating artificial micelle milk (AMM) containing βlactoglobulin (β-lg) in natural concentrations was due to sulphydryl-mediated complex formation between β-lg and micellar κ-casein which appeared to interfere with the micelle–micelle interactions responsible for syneresis. The results presented here were part of a study which investigated the effects of κcasein and κ-lg genetic variants and concentrations on syneresis of curd formed from renneted heated AMM.


1973 ◽  
Vol 29 (1) ◽  
pp. 121-125 ◽  
Author(s):  
R. Volcani ◽  
Kivka Zisling ◽  
D. Sklan ◽  
Zafrira Nitzan

1. The composition of the milk of Chinchilla chinchilla chinchilla was determined throughout lactation in twenty-eight chinchillas. The amino acid pattern of the protein and the fatty acid composition of the milk were determined, and the effect of three different diets on the milk composition was studied.2. The milk contained (g/kg): 64–80 protein, 108–156 fat, 17 lactose and 10 ash.3. Paper and polyacrilamide gel electrophoresis showed four additional protein fractions that are not apparent in bovine milk protein.


Author(s):  
Jean-Michel HASCOET ◽  
Martine CHAUVIN ◽  
Christine PIERRET ◽  
Sebastien SKWERES ◽  
Louis-dominique VAN EGROO ◽  
...  

(1) Background: Premature infants require mothers’ milk fortification to meet nutrition needs, but breast milk composition may be variable leading to a risk of inadequate nutrition. We aimed at determining factors influencing mothers’ milk macronutrients. (2) Methods: Milk samples were analyzed for the first 5 weeks after premature delivery, by infrared spectroscopy. Mothers’ nutritional intake data were obtained during standardized interviews with dieticians then analyzed with reference software. (3) Results: Composition of 367 milk samples from 81 mothers was (Median [range]g/100mL): Carbohydrates 6.8[4.4-7.3], lipids 3.4[1.3-6.4], proteins 1.3[0.1-3.1]. There was a relationship of milk composition with mothers’ carbohydrates intake only (r=0.164; p&lt;.01). Postnatal age was correlated with milk proteins (r=-0.505 p&lt;.001) &amp; carbohydrates (r=+0.202, p&lt;.001). Multiple linear regression analyses showed (coefficient) a relationship between milk proteins r=0.547 and postnatal age (-0.028), carbohydrates intake (+0.449) and the absence of maturation (-0.066); and between milk lipids r=0.295 and carbohydrates intake (+1.279) and smoking (-0.557). Finally, between milk carbohydrates concentration r=0.266 and postnatal age (+0.012) and smoking (-0.167). (4) Conclusions: Variability of mothers’ milk composition is differentially associated for each macronutrient with maternal carbohydrates intake, antenatal steroids, smoking, and postnatal age. Improvement in milk composition could be achieved by modification of these related factors.


1993 ◽  
Vol 2 (5) ◽  
pp. 423-429
Author(s):  
Fawzy Taha ◽  
Zdenko Puhan

Individual cow milk samples from (a) 208 original Swiss Simmental (OSS), (b) 220 of their crosses (Simmental cattle = FV) with American Red Holstein (RH), (c) 215 original Swiss Brown (OSB) and (d) 390 of their crosses (Brown cattle = BV) with American Brown Swiss (BS) were genotyped for the variants of milk caseins (Cn) and β-Lactoglobulin (β-Lg). In addition, the association between κ-Cn genotypes and milk yield was studied. Reasonable differences in the allele frequencies were found between the breeds. Compared to pure-bred OSS, crossing with RH resulted in a decrease in the frequencies of αs1-Cn C, β-Cn B and κ-Cn B and in an increased frequency of β-Lg B. Within OSB, increased crossing with BS resulted in a decrease in the frequencies of αs1-Cn C and β-Cn B and in increased frequencies of κ-Cn B and β-Lg B. A significant association between the κ-Cn locus and milk yield could only be shown for the OSS breed.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 300-300
Author(s):  
Delaney Smith ◽  
Michael Thonney ◽  
Katherine Petersson ◽  
Maria L Hoffman

Abstract The objective of this study was to examine the effect of feeding cranberry vine (CV) on milk components during early lactation as part of a larger study on the antiparasitic efficacy of CV supplementation on ewes during the periparturient period. Ewes were fed a 50% CV pellet (CVP; n = 12) or a control pellet (CON; n = 13) beginning at 102±1 d of pregnancy until d 65±1 postpartum. The CV pellet fed was formulated to be equivalent in digestible dry matter to the control pellet. BW was determined weekly during the study and milk samples were collected weekly during lactation. Data were analyzed in SAS with repeated measures. Ewe BW were similar at the start of study (180.36lbs ± 4.70lbs; P = 0.43) however by wk 8 postpartum CVP ewes weighed less than CON ewes (CON: 212.31lbs±7.86lbs; CVP: 185.58lbs±8.00lbs; P = 0.04). There was a treatment*wk effect observed for milk fat, protein and MUN (P ≤ 0.05). Ewes fed CVP exhibited reduced milk fat at wks 2 (CON: 6.75%±0.63%; CVP: 6.06%±0.58%; P = 0.03) and 5 (CON: 6.66%±0.37%; CVP: 5.54%±0.26%; P = 0.05), milk protein was reduced in CVP ewes at wk 2 (CON: 4.92%±0.12%; CVP: 4.72%±0.19%; P = 0.05) and MUN was greater at weeks 4 (CON: 22.89±0.7mg/dL; CVP: 27.93±0.85mg/dL; P = 0.01) and 8 (CON: 24.80±0.51mg/dL; CVP: 26.64±0.86mg/dL; P &lt; 0.01) in CVP ewes. Somatic cell analysis is pending. In conclusion, CVP supplementation during lactation affects milk composition in sheep. Studies are underway to determine the effect of CV supplementation on additional metabolic parameters in pregnant and lactating ewes.


Sign in / Sign up

Export Citation Format

Share Document