Technological properties of indigenous Lactococcus lactis strains isolated from Lait caillé, a spontaneous fermented milk from Burkina Faso

2020 ◽  
Vol 87 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Geoffroy Romaric Bayili ◽  
Pernille Greve Johansen ◽  
Anni Bygvrå Hougaard ◽  
Bréhima Diawara ◽  
Georges Anicet Ouedraogo ◽  
...  

AbstractThe experiments reported in this research paper aimed to determine the technological properties of indigenous Lactococcus lactis strains isolated from Lait caillé, a spontaneous fermented milk, from the perspective of starter culture development. Fermentations were conducted to determine the acidification patterns. The ropy character, growth in 0.04 g/ml NaCl and citrate metabolism were additionally tested. Furthermore, the rheological properties of samples from selected strains and the impact of cold storage were evaluated. Based on the rate of acidification, the indigenous strains were divided into 2 groups depending on their fermentation time, i.e. 10–13 h (fast acidifier), and up to 72 h (slow acidifier), respectively. The physiological tests suggested that most of these strains produced exopolysaccharides but none could ferment citrate. The flow properties of the samples inoculated by the fast acidifier strains showed a time-dependent shear thinning behaviour, while their viscoelastic properties corresponded structurally to those of weak gels. Cold storage decreased the viscosity and CFU counts for most of the indigenous strains tested. This study is a step towards the definition of starter cultures for African spontaneous fermented milks such as Lait caillé.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3876
Author(s):  
Fouad M. F. Elshaghabee ◽  
Ahmed A. Abd El-Maksoud ◽  
Sulaiman Ali Alharbi ◽  
Saleh Alfarraj ◽  
Mahmoud S. M. Mohamed

The improvement of milk dairy products’ quality and nutritional value during shelf-life storage is the ultimate goal of many studies worldwide. Therefore, in the present study, prospective beneficial effects of adding two different industrial yeasts, Kluyveromyces lactis and Saccharomyces cerevisiae pretreated by heating at 85 °C for 10 min to be inactivated, before fermentation on some properties of ABT fermented milk were evaluated. The results of this study showed that the addition of 3% and 5% (w/v) heat-treated yeasts to the milk enhanced the growth of starter culture, Lactobacillus acidophilus, Bifidobacteria, and Streptococcus thermophilus, during the fermentation period as well as its viability after 20 days of cold storage at 5 ± 1 °C. Furthermore, levels of lactic and acetic acids were significantly increased from 120.45 ± 0.65 and 457.80 ± 0.70 µg/mL in the control without heat-treated yeast to 145.67 ± 0.77 and 488.32 ± 0.33 µg/mL with 5% supplementation of Sacch. cerevisiae respectively. Moreover, the addition of heat-treated yeasts to ABT fermented milk enhanced the antioxidant capacity by increasing the efficiency of free radical scavenging as well as the proteolytic activity. Taken together, these results suggest promising application of non-viable industrial yeasts as nutrients in the fermentation process of ABT milk to enhance the growth and viability of ABT starter cultures before and after a 20-day cold storage period by improving the fermented milk level of organic acids, antioxidant capacity, and proteolytic activities.


2018 ◽  
Vol 21 (0) ◽  
Author(s):  
Claudia Fieira ◽  
João Francisco Marchi ◽  
Daiana Marafão ◽  
Alexandre da Trindade Alfaro

Abstract Italian salami is a cured meat with high sodium contents which is easy, fast and convenient to consume. Starter cultures are used to improve its sensory characteristics and refine its technological manufacturing process. The goal of this study was to reduce the sodium content in Italian salami through the partial replacement of sodium chloride by potassium chloride, magnesium chloride and calcium chloride, and evaluate the viability of the Lactobacillus sp. and Staphylococcus sp. cells found in the starter culture. Four formulations were elaborated: one with, and one without the starter culture, but both with the addition of sodium chloride; and two with the partial replacement of 60% of the sodium chloride: the first with KCl, and the other with a mixture of KCl, MgCl2 and CaCl2. Physicochemical and microbiological evaluations were carried out to monitor the ripening and the quality of the final product. The partial replacement of NaCl by other salts (MgCl2, CaCl2, KCl) did not interfere in the growth of the starter culture in the Italian salami, neither did it affect the majority of the physicochemical parameters of the Italian salami nor the microbiological quality of the final product.


2008 ◽  
Vol 74 (7) ◽  
pp. 1988-1996 ◽  
Author(s):  
Nieves García-Quintáns ◽  
Guillermo Repizo ◽  
Mauricio Martín ◽  
Christian Magni ◽  
Paloma López

ABSTRACT Lactococcus lactis subsp. lactis bv. diacetylactis strains are aroma-producing organisms used in starter cultures for the elaboration of dairy products. This species is essentially a fermentative microorganism, which cometabolizes glucose and citrate to yield aroma compounds through the diacetyl/acetoin biosynthetic pathway. Our previous results have shown that under acidic growth Lactococcus bv. diacetylactis CRL264 expresses coordinately the genes responsible for citrate transport and its conversion into pyruvate. In the present work the impact of acidic growth on glucose, citrate, and pyruvate metabolism of Lactococcus bv. diacetylactis CRL264 has been investigated by proteomic analysis. The results indicated that acid growth triggers the conversion of citrate, but not glucose, into α-acetolactate via pyruvate. Moreover, they showed that low pH has no influence on levels of lactate dehydrogenase and pyruvate dehydrogenase. Therefore, the influence of external pH on regulation of the diacetyl/acetoin biosynthetic pathway in Lactococcus bv. diacetylactis CRL264 has been analyzed at the transcriptional level. Expression of the als, aldB, aldC, and butBA genes encoding the enzymes involved in conversion of pyruvate into aroma compounds has been investigated by primer extension, reverse transcription-PCR analysis, and transcriptional fusions. The results support that this biosynthetic pathway is induced at the transcriptional level by acidic growth conditions, presumably contributing to lactococcal pH homeostasis by synthesis of neutral compounds and by decreasing levels of pyruvate.


1988 ◽  
Vol 51 (5) ◽  
pp. 386-390 ◽  
Author(s):  
Y. A. EL-SAMRAGY ◽  
E. O. FAYED ◽  
A. A. ALY ◽  
A. E. A. HAGRASS

The traditional yogurt starter, i.e. Staphylococcus thermophilus and Lactobacillus bulgaricus, has always been used to bring about the lactic acid fermentation during manufacture of concentrated yogurt known in Egypt as “Labneh”. Different combinations of some strains of Enterococcus faecalis, isolated from Laban Rayeb (a type of fermented milk), in combination with a certain strain of Lactobacillus bulgaricus were used to produce a Labneh-like product. Chemical, microbiological and organoleptic properties of the Labneh-like product were assessed and compared to the characteristics of Labneh processed traditionally by two different dairy plants in Egypt. All treatments showed similar changes during storage at 5 ± 1°C for 28 d. Total solids, fat, titratable acidity and pH values coincided with those of Labneh. Some components increased until the seventh day, i.e. acetaldehyde and diacetyl, while other features, such as the ratio of soluble nitrogen/total nitrogen and tyrosine, increased until the fourteenth day of storage. Thereafter, no marked variations occurred. However, a decrease in tryptophan content of all products occurred during the storage period. Total viable count and count of lactic acid bacteria of Labneh-like product as well as Labneh increased until the end of the second week of storage and then decreased. Coliforms, yeasts and molds and psychrotrophic bacteria were detected in some fresh and stored samples. The starter culture which consisted of 1.5% Enterococcus faecalis 19 and 1.5% Enterococcus faecalis 22 was used successfully to manufacture a Labneh-like product with high acceptability when fresh or refrigerated at 5 ± 1°C.


2020 ◽  
Vol 87 (2) ◽  
pp. 259-262
Author(s):  
Monique Colombo ◽  
Svetoslav D. Todorov ◽  
Antonio F. Carvalho ◽  
Luís A. Nero

AbstractIn this research paper we describe the technological properties of beneficial lactic acid bacteria (LAB) obtained from a dairy production chain and the development of a fermented milk produced with Lactobacillus casei MRUV6. Fifteen LAB isolates (Lactobacillus sp., Pediococcus sp. and Weissela sp.) presented acidifying abilities (pH ranges from 0.73 to 2.11), were able to produce diacetyl (except by 5 isolates) and exopolysaccharides, and two were proteolytic. L. casei MRUV6 was selected for producing a fermented milk, stored up to 35 d at 4 and 10°C. Counts on MRS agar with added vancomycin (10 mg/l) and MRS agar with added bile salts (1.5% w/v) ranged from 9.7 to 9.9 log CFU/g, independently of the tested conditions, indicating stability and intestinal resistance of L. casei MRUV6, despite some significant differences (P < 0.05). The study demonstrated the technological potential of a potential probiotic candidate strain, L. casei MRUV6, to be used as a starter culture in the dairy industry.


2007 ◽  
Vol 70 (11) ◽  
pp. 2512-2517 ◽  
Author(s):  
C. REVIRIEGO ◽  
L. FERNÁNDEZ ◽  
J. M. RODRÍGUEZ

Food-grade heterologous production of pediocin PA-1 in nisin-producing and non–nisin-producing Lactococcus lactis strains, previously selected because of their technological properties for cheese making, was achieved. Plasmid pGA1, which contains the complete pediocin operon under the control of the strong P32 promoter and is devoid of any antibiotic marker, was introduced into L. lactis ESI 153 and L. lactis ESI 515 (Nis+). Transformation of L. lactis ESI 515 with pGA1 did not affect its ability to produce nisin. The antimicrobial activity of the pediocin-producing transformants on the survival of Listeria innocua SA1 during cheese ripening was also investigated. Cheeses were manufactured from milk inoculated with 1% of the lactic culture and with or without approximately 4 log CFU/ml of the Listeria strain. L. lactis ESI 153, L. lactis ESI 515, and their transformants (L. lactis GA1 and GA2, respectively) were used as starter cultures. At the end of the ripening period, counts of L. innocua in cheeses made with the bacteriocin-producing lactococcal strains were below 50 CFU/g in the L. lactis GA1 cheeses and below 25 CFU/g in the L. lactis GA2 ones, compared with 3.7 million CFU/g for the controls without nisin or pediocin production.


2004 ◽  
Vol 67 (2) ◽  
pp. 403-406 ◽  
Author(s):  
R. D. RAO ◽  
W. L. WENDORFF ◽  
K. SMITH

Whey is often stored or transported for a period of time prior to processing. During this time period, galactose and lactic acid concentrations may accumulate, reducing the quality of spray-dried whey powders in regard to stickiness and agglomeration. This study surveyed industry samples of Cheddar and mozzarella cheese whey streams to determine how galactose and lactic acid concentrations changed with storage at appropriate (4°C) and abuse (37.8°C) temperatures. Samples stored at 4°C did not exhibit significant increases in levels of lactic acid or galactose. Mozzarella whey accumulated the greatest amount of galactose and lactic acid with storage at 37.8°C. Whey samples derived from cheese made from single strains of starter culture were also evaluated to determine each culture's contribution to galactose and lactic acid production. Starter cultures evaluated included Streptococcus salivarius ssp. thermophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. cremoris, and Lactococcus lactis ssp. lactis. Whey derived from L. helveticus accumulated a significantly greater amount of lactic acid upon storage at 37.8°C as compared with the other cultures. Galactose accumulation was significantly decreased in whey from L. lactis ssp. lactis stored at 37.8°C in comparison with the other cultures. Results from this study indicate that proper storage conditions (4°C) for whey prevent accumulation of galactose and lactic acid while the extent of accumulation during storage at 37.8°C varies depending on the culture(s) used in cheese production.


Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


2010 ◽  
Author(s):  
◽  
Vinodh Aroon Edward

Cassava, (Manihot esculenta Crantz), is used for the production of a variety of West African foods and ranks fourth in the list of major crops in developing countries after rice, wheat and maize. Gari is one of the most popular foods produced from cassava. Cassava may contain high levels of linamarin, a cyanogenic glucoside, which in its natural state is toxic to man. Therefore, some processing methods that can enhance the detoxification of cassava and lead to the improvement of the quality and hygienic safety of the food are vitally important for less toxic products to be obtained. Quality, safety and acceptability of traditional fermented foods may be improved through the use of starter cultures. There has been a trend recently to isolate wild-type strains from traditional products for use as starter cultures in food fermentation. A total of 74 bacterial strains and 21 yeast strains were isolated from a cassava mash fermentation process in a rural village in Benin, West Africa. These strains were assessed, together with 26 strains isolated at the CSIR from cassava samples sent from Benin previously, for phenotypic and technological properties. Twenty four presumptive lactic acid bacteria (LAB) were selected for further phenotypic, genotypic and technological characterization during a research visit to the BFE (now Max Rubner Institute of Nutrition and Food). After assessment, the strains VE 20, VE 36, VE 65b, VE 77 and VE 82 were chosen for further study as starter cultures. These L. plantarum strains were chosen on the basis of predominance and possession of suitable technological properties. The investigation of this study was complemented by further, similar studies on further Gari isolates in Germany by the BFE. That study was done independently from this study, but both studies served to select potential starter cultures for cassava fermentation for the production of Gari, as this was the common goal of the project. Thus, a wider final selection of potential starter cultures was decided on at the project level and this selection was further tested in fermentation experiments. A total of 17 strains were grown in optimized media in 2 L fermenters. These strains were freeze-dried and thereafter tested in lab-scale cassava mash fermentation trials. xiii The strains performed well in the small scale bucket fermentations. There was a rapid acidification evidenced by the increase in titratable acidity, ranging from 1.1 to 1.3 % at 24 hours, and 1.3 to 1.6 % at 48 hours. The effect of the starter was obvious in that it lowered the pH much faster and to lower levels than the control. It appeared that both the processing and starter culture addition played a role in the removal of cyanide during processing of the cassava into Gari. This was evident from the lower cyanide values obtained for fermentations that included starter cultures. The study also showed that especially the L. plantarum group strains could be produced as starter cultures at lower costs than compared to L. fermentum, W. paramesenteroides or L. mesenteroides strains. Overall the results of this study were crucial for the project in showing that a starter culture which is easy and economical to produce and which has the desired attributes is a feasible possibility for application in the field.


Sign in / Sign up

Export Citation Format

Share Document