Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows

2008 ◽  
Vol 607 ◽  
pp. 167-197 ◽  
Author(s):  
N. BELOUAGGADIA ◽  
H. OLIVIER ◽  
R. BRUN

A theoretical model based on a quasi-one-dimensional formulation is developed which allows determination of the shock stand-off distance at the stagnation point of blunt bodies in hypersonic non-equilibrium flows. Despite the simple ideal dissociating gas model implemented in the theoretical approach, it gives insight into the main physics governing the shock stand-off problem. More detailed and precise data are obtained by a numerical simulation where vibrational and chemical relaxation processes as well as their interactions are taken into account. The physical modelling of these processes is based on a kinetic approach and on a generalized Chapman–Enskog method of solving the Boltzmann equation. Explicit formulae for rate constants and vibrational energy consumption are derived and incorporated into the general conservation equations. Good agreement between theoretical, numerical and experimental results is achieved which ensures a reliable and mutual validation of the different methods.

2008 ◽  
Vol 86 (7) ◽  
pp. 857-862 ◽  
Author(s):  
R L Gattinger ◽  
D A Degenstein ◽  
E J Llewellyn ◽  
M H Stevens

In this study, we present spectra of the mesospheric OH A2Σ+ –X2Π band system, including the 0–0, 1–1, and 1–0 bands, as observed by OSIRIS (Optical Spectrograph and Infrared Imaging System). Spectral components due to Rayleigh-scattered sunlight, lower thermospheric dayglow emission features, and baffle scatter have been removed to isolate the OH emission signature. The observed spectra are compared with model spectra assembled using rotational emission rate factors for solar resonance fluorescence (g-factors) plus prompt emission of the OH A2Σ+ –X2Π band system from solar Lyman-α photodissociation of water. The observed band ratios are in good agreement with the model values. The altitude variation of the 0–0 band, relative to the 1–1 band, is in agreement with model predictions based on vibrational energy transfer from OH A2Σ+ ν′ = 1 to OH A2Σ+ ν′ = 0. This detailed understanding of the OH A2Σ+ –X2Π system is critical for the successful application of OH observations to the determination of mesospheric OH densities and water vapor concentrations.PACS Nos.: 33.20.Lg, 33.20.Tp, 33.70.Fd, 92.60.hc, 92.60.hw


1969 ◽  
Vol 62 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Lars Carlborg

ABSTRACT Oestrogens administered in lower doses than necessary to induce full cornification of the mouse vagina induce mucification. It was shown previously that the degree of mucification could be estimated by quantitative determination of sialic acids. A suitable parameter for oestrogen assay was the measurement of vaginal sialic acid concentration which exhibited a clear cut dose response curve. Eleven assays of various oestrogens were performed with this method. Their estimated relative potencies were in good agreement with other routine oestrogen assays. A statistically sufficient degree of precision was found. The sensitivity was of the same order, or slightly higher, than the Allen-Doisy test.


1967 ◽  
Vol 13 (6) ◽  
pp. 515-520 ◽  
Author(s):  
Genevieve Farese ◽  
Janice L Schmidt ◽  
Milton Mager

Abstract A completely automated analysis is described for the determination of serum calcium with glyoxal bis (2-hydroxyanil) solution (GBHA). The method is simple and precise, and the data obtained are in good agreement with results obtained by the manual GBHA procedure.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Organics ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 38-49
Author(s):  
Lakhdar Benhamed ◽  
Sidi Mohamed Mekelleche ◽  
Wafaa Benchouk

Experimentally, a reversal of chemoselectivity has been observed in catalyzed Diels–Alder reactions of α,β-unsaturated aldehydes (e.g., (2E)-but-2-enal) and ketones (e.g., 2-hexen-4-one) with cyclopentadiene. Indeed, using the triflimidic Brønsted acid Tf2NH as catalyst, the reaction gave a Diels–Alder adduct derived from α,β-unsaturated ketone as a major product. On the other hand, the use of tris(pentafluorophenyl)borane B(C6F5)3 bulky Lewis acid as catalyst gave mainly the cycloadduct of α,β-unsaturated aldehyde as a major product. Our aim in the present work is to put in evidence the role of the catalyst in the reversal of the chemoselectivity of the catalyzed Diels–Alder reactions of (2E)-but-2-enal and 2-Hexen-4-one with cyclopentadiene. The calculations were performed at the ωB97XD/6-311G(d,p) level of theory and the solvent effects of dichloromethane were taken into account using the PCM solvation model. The obtained results are in good agreement with experimental outcomes.


Author(s):  
Isabel Abad-Álvaro ◽  
Diego Leite ◽  
Dorota Bartczak ◽  
Susana Cuello ◽  
Beatriz Gomez-Gomez ◽  
...  

Toxicological studies concerning nanomaterials in complex biological matrices usually require a carefully designed workflow that involves handling, transportation and preparation of a large number of samples without affecting the nanoparticle...


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3567
Author(s):  
Beata Szymanska ◽  
Zenon Lukaszewski ◽  
Beata Zelazowska-Rutkowska ◽  
Kinga Hermanowicz-Szamatowicz ◽  
Ewa Gorodkiewicz

Human epididymis protein 4 (HE4) is an ovarian cancer marker. Various cut-off values of the marker in blood are recommended, depending on the method used for its determination. An alternative biosensor for HE4 determination in blood plasma has been developed. It consists of rabbit polyclonal antibody against HE4, covalently attached to a gold chip via cysteamine linker. The biosensor is used with the non-fluidic array SPRi technique. The linear range of the analytical signal response was found to be 2–120 pM, and the biosensor can be used for the determination of the HE4 marker in the plasma of both healthy subjects and ovarian cancer patients after suitable dilution with a PBS buffer. Precision (6–10%) and recovery (101.8–103.5%) were found to be acceptable, and the LOD was equal to 2 pM. The biosensor was validated by the parallel determination of a series of plasma samples from ovarian cancer patients using the Elecsys HE4 test and the developed biosensor, with a good agreement of the results (a Pearson coefficient of 0.989). An example of the diagnostic application of the developed biosensor is given—the influence of ovarian tumor resection on the level of HE4 in blood serum.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2755
Author(s):  
Kyuhwe Kang ◽  
Gyung-Min Choi

The electron-phonon coupling (g) parameter plays a critical role in the ultrafast transport of heat, charge, and spin in metallic materials. However, the exact determination of the g parameter is challenging because of the complicated process during the non-equilibrium state. In this study, we investigate the g parameters of ferromagnetic 3d transition metal (FM) layers, Fe and Co, using time-domain thermoreflectance. We measure a transient increase in temperature of Au in an FM/Au bilayer; the Au layer efficiently detects the strong heat flow during the non-equilibrium between electrons and phonons in FM. The g parameter of the FM is determined by analyzing the temperature dynamics using thermal circuit modeling. The determined g values are 8.8–9.4 × 1017 W m−3 K−1 for Fe and 9.6–12.2 × 1017 W m−3 K−1 for Co. Our results demonstrate that all 3d transition FMs have a similar g value, in the order of 1018 W m−3 K−1.


Author(s):  
Olga Wronikowska ◽  
Maria Zykubek ◽  
Agnieszka Michalak ◽  
Anna Pankowska ◽  
Paulina Kozioł ◽  
...  

AbstractMephedrone is a widely used drug of abuse, exerting its effects by interacting with monoamine transporters. Although this mechanism has been widely studied heretofore, little is known about the involvement of glutamatergic transmission in mephedrone effects. In this study, we comprehensively evaluated glutamatergic involvement in rewarding effects of mephedrone using an interdisciplinary approach including (1) behavioural study on effects of memantine (non-selective NMDA antagonist) on expression of mephedrone-induced conditioned place preference (CPP) in rats; (2) evaluation of glutamate concentrations in the hippocampus of rats following 6 days of mephedrone administration, using in vivo magnetic resonance spectroscopy (MRS); and (3) determination of glutamate levels in the hippocampus of rats treated with mephedrone and subjected to MRS, using ion-exchange chromatography. In the presented research, we confirmed priorly reported mephedrone-induced rewarding effects in the CPP paradigm and showed that memantine (5 mg/kg) was able to reverse the expression of this effect. MRS study showed that subchronic mephedrone administration increased glutamate level in the hippocampus when measured in vivo 24 h (5 mg/kg, 10 mg/kg and 20 mg/kg) and 2 weeks (5 mg/kg and 20 mg/kg) after last injection. Ex vivo chromatographic analysis did not show significant changes in hippocampal glutamate concentrations; however, it showed similar results as obtained in the MRS study proving its validity. Taken together, the presented study provides new insight into glutamatergic involvement in rewarding properties of mephedrone.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 930
Author(s):  
Fahimeh Hadavimoghaddam ◽  
Mehdi Ostadhassan ◽  
Ehsan Heidaryan ◽  
Mohammad Ali Sadri ◽  
Inna Chapanova ◽  
...  

Dead oil viscosity is a critical parameter to solve numerous reservoir engineering problems and one of the most unreliable properties to predict with classical black oil correlations. Determination of dead oil viscosity by experiments is expensive and time-consuming, which means developing an accurate and quick prediction model is required. This paper implements six machine learning models: random forest (RF), lightgbm, XGBoost, multilayer perceptron (MLP) neural network, stochastic real-valued (SRV) and SuperLearner to predict dead oil viscosity. More than 2000 pressure–volume–temperature (PVT) data were used for developing and testing these models. A huge range of viscosity data were used, from light intermediate to heavy oil. In this study, we give insight into the performance of different functional forms that have been used in the literature to formulate dead oil viscosity. The results show that the functional form f(γAPI,T), has the best performance, and additional correlating parameters might be unnecessary. Furthermore, SuperLearner outperformed other machine learning (ML) algorithms as well as common correlations that are based on the metric analysis. The SuperLearner model can potentially replace the empirical models for viscosity predictions on a wide range of viscosities (any oil type). Ultimately, the proposed model is capable of simulating the true physical trend of the dead oil viscosity with variations of oil API gravity, temperature and shear rate.


Sign in / Sign up

Export Citation Format

Share Document